Used in combination with immunomodulatory therapies, remyelinating therapies are a viable therapeutic approach for treating individuals with multiple sclerosis. Studies of postmortem MS brains identified greater remyelination in demyelinated cerebral cortex than in demyelinated brain white matter and implicated reactive astrocytes as an inhibitor of white matter remyelination. An animal model that recapitulates these phenotypes would benefit the development of remyelination therapeutics.
View Article and Find Full Text PDFObjective: Hippocampal demyelination, a common feature of postmortem multiple sclerosis (MS) brains, reduces neuronal gene expression and is a likely contributor to the memory impairment that is found in >40% of individuals with MS. How demyelination alters neuronal gene expression is unknown.
Methods: To explore whether loss of hippocampal myelin alters expression of neuronal microRNAs (miRNAs), we compared miRNA profiles from myelinated and demyelinated hippocampi from postmortem MS brains and performed validation studies.
Natural autoreactive monoclonal IgM antibodies have demonstrated potential as therapeutic agents for central nervous system (CNS) disease. These antibodies bind surface antigens on specific CNS cells, activating intracellular repair-promoting signals. IgM antibodies that bind to surface antigens on oligodendrocytes enhanced remyelination in animal models of multiple sclerosis.
View Article and Find Full Text PDFThe HMGA family proteins HMGA1a and HMGA1b are nuclear nonhistone species implicated in a wide range of cellular processes including inducible gene transcription, modulation of chromosome structure through nucleosome and chromosome remodeling, and neoplastic transformation. HMGA proteins are highly modified, and changes in their phosphorylation states have been correlated with the phase of the cell cycle and changes in their transcriptional activity. HMGA1a is also methylated in the first DNA-binding AT-hook at Arg25 and other sites, although the enzyme or enzymes responsible have not been identified.
View Article and Find Full Text PDFMost naturally occurring mammalian cancers and immortalized tissue culture cell lines share a common characteristic, the overexpression of full-length HMGA1 (high mobility group A1) proteins. The HMGA1 protooncogene codes for two closely related isoform proteins, HMGA1a and HMGA1b, and causes cancerous cellular transformation when overexpressed in either transgenic mice or "normal" cultured cell lines. Previous work has suggested that the in vivo types and patterns of the HMGA1 post-translational modifications (PTMs) differ between normal and malignant cells.
View Article and Find Full Text PDFThe high mobility group (HMG) proteins are important modulators of chromatin structure and gene transcription. Overexpression of HMGA1 proteins in vivo induces neoplastic transformation and promotes a highly metastatic cellular phenotype. This study focuses on characterization of HMGA1a in vivo posttranslational modification (PTM) patterns found in a nonmetastatic and two metastatic lines of MCF-7 human breast cancer cells of differing tumorigenic potential.
View Article and Find Full Text PDF