Publications by authors named "Dale E Mais"

Models of atherosclerosis are used in preclinical studies but often fail to translate to humans. A model that better reflects human atherosclerosis is necessary. We recently engineered the ExeGen™ low-density lipoprotein receptor (LDLR) miniswine, in which the LDL receptor gene is modified to drive hypercholesterolemia and atherosclerosis, and showed diet-related exacerbation of these phenotypes.

View Article and Find Full Text PDF

Development of effective vaccines against emerging infectious diseases (EID) can take as much or more than a decade to progress from pathogen isolation/identification to clinical approval. As a result, conventional approaches fail to produce field-ready vaccines before the EID has spread extensively. Lassa is a prototypical emerging infectious disease endemic to West Africa for which no successful vaccine is available.

View Article and Find Full Text PDF

Continuing studies on tetrahydroquinoline glucocorticoid receptor anti-inflammatory agents lead to the identification of several tetrahydroquinolin-3-yl carbamates that exhibited steroid-like activity in in vitro transrepression assays with reduced transactivation of phosphoenol pyruvate carboxykinase (PEPCK), a key enzyme in the gluconeogenesis pathway.

View Article and Find Full Text PDF

Continuing studies based on dihydroquinoline glucocorticoid receptor agonists lead to the discovery of a series of C4-oxime analogs. Representative compounds exhibited potent transrepression activity with minimal transactivation of phosphoenolpyruvate caboxykinase (PEPCK), a key protein in the gluconeogenesis pathway. These compounds represent promising leads in identifying GR agonists with high anti-inflammatory activity and attenuated potential for glucose elevation.

View Article and Find Full Text PDF

A series of tetrahydroquinoline derivatives were synthesized and profiled for their ability to act as glucocorticoid receptor selective modulators. Structure-activity relationships of the tetrahydroquinoline B-ring lead to the discovery of orally available GR-selective agonists with high in vivo activity.

View Article and Find Full Text PDF

We have previously disclosed a series of glucocorticoid receptor (GR) ligands derived from 6-indole-1,2,3,4-tetrahydroquinolines through structure-activity relationship (SAR) of the pendent C6-indole ring. In parallel with this effort, we now report SAR of the tetrahydroquinoline A-ring that identified the importance of a C3 hydroxyl in improving GR selectivity within a series of non-steroidal GR agonists.

View Article and Find Full Text PDF

Throughout the centuries, traditional Chinese medicine has been a rich resource in the development of new drugs. Modern drug discovery, which relies increasingly on automated high throughput screening and quick hit-to-lead development, however, is confronted with the challenges of the chemical complexity associated with natural products. New technologies for biological screening as well as library building are in great demand in order to meet the requirements.

View Article and Find Full Text PDF

Selective antagonists of the glucocorticoid receptor (GR) are desirable for the treatment of hypercortisolemia associated with Cushing's syndrome, psychic depression, obesity, diabetes, neurodegenerative diseases, and glaucoma. NC3327, a non-steroidal small molecule with potent binding affinity to GR (K(i)=13.2nM), was identified in a high-throughput screening effort.

View Article and Find Full Text PDF

Recent clinical trials with bisphosphonates and PTH have not supported the hypothesis that combination treatments with antiresorptive and anabolic agents would lead to synergistic activity. We hypothesized that combination treatment with a selective androgen receptor modulator (SARM), LGD-3303, and a bisphosphonate would be beneficial. In vitro competitive binding and transcriptional activity assays were used to characterize LGD-3303.

View Article and Find Full Text PDF

The progesterone receptor plays an important role in the female reproductive system. Here we describe the discovery of a new selective progesterone receptor modulator (SPRM). In rats, the lead compound, 7,9-difluoro-5-(3-methylcyclohex-2-enyl)-2,2,4-trimethyl-1,2-dihydrochromeno[3,4- f]quinoline ( 5c), inhibited ovulation and showed full efficacy in uterine and vaginal tissue but was a mixed partial agonist/antagonist in breast tissue.

View Article and Find Full Text PDF

A series of nonsteroidal glucocorticoid receptor (GR) ligands based on a 6-indole-1,2,3,4-tetrahydroquinoline scaffold are reported. Structure-activity relationship (SAR) of the pendent indole group identified compound 20 exhibiting good GR binding affinity (K(i)=1.5nM) and 100- to 1000-fold selectivity over MR, PR, and AR while showing activity in an E-selectin repression assay.

View Article and Find Full Text PDF

Glucocorticoids are commonly used antiinflammatory agents whose use is limited by side effects. We have developed a series of glucocorticoid receptor (GR) ligands that retain the strong antiinflammatory activity of conventional glucocorticoids with reduced side effects. We present a compound, LGD5552, that binds the receptor efficiently and strongly represses inflammatory gene expression.

View Article and Find Full Text PDF

Structure-activity relationship studies centered around 3'-substituted (Z)-5-(2'-(thienylmethylidene))1,2-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5H-chromeno[3,4-f]quinolines are described. A series of highly potent and efficacious selective glucocorticoid receptor modulators were identified with in vitro activity comparable to dexamethasone. In vivo evaluation of these compounds utilizing a 28 day mouse tumor xenograft model demonstrated efficacy equal to dexamethasone in the reduction of tumor volume.

View Article and Find Full Text PDF

Recent interest in orally available androgens has fueled the search for new androgens for use in hormone replacement therapy and as anabolic agents. In pursuit of this, we have discovered a series of novel androgen receptor modulators derived from 7H-[1,4]oxazino[3,2-g]quinolin-7-ones. These compounds were synthesized and evaluated in competitive binding assays and an androgen receptor transcriptional activation assay.

View Article and Find Full Text PDF

Specific retinoid X receptor (RXR) agonists, such as LG100268 (LG268), and the thiazolidinedione (TZD) PPARgamma agonists, such as rosiglitazone, produce insulin sensitization in rodent models of insulin resistance and type 2 diabetes. In sharp contrast to the TZDs that produce significant increases in body weight gain, RXR agonists reduce body weight gain and food consumption. Unfortunately, RXR agonists also suppress the thyroid hormone axis and generally produce hypertriglyceridemia.

View Article and Find Full Text PDF

To understand the species selectivity in a series of alpha-methyl-alpha-phenoxy carboxylic acid PPARalpha/gamma dual agonists (1-11), structure-based molecular modeling was carried out in the ligand binding pockets of both human and mouse PPARalpha. This study suggested that interaction of both 4-phenoxy and phenyloxazole substituents of these ligands with F272 and M279 in mouse PPARalpha leads to the species-specific divergence in ligand binding. Insights obtained in the molecular modeling studies of these key interactions resulted in the ability to convert a human-selective PPARalpha agonist to a human and mouse dual agonist within the same platform.

View Article and Find Full Text PDF

The design and synthesis of the dual peroxisome proliferator activated receptor (PPAR) alpha/gamma agonist (S)-2-methyl-3-[4-[2-(5-methyl-2-thiophen-2-yl-oxazol-4-yl)ethoxy]phenyl]-2-phenoxypropionic acid (2) for the treatment of type 2 diabetes and associated dyslipidemia are described. 2 possesses a potent dual hPPAR alpha/gamma agonist profile (IC(50) = 28 and 10 nM; EC(50) = 9 and 4 nM, respectively, for hPPARalpha and hPPARgamma). In preclinical models, 2 substantially improves insulin sensitivity and potently reverses diabetic hyperglycemia while significantly improving overall lipid homeostasis.

View Article and Find Full Text PDF

A series of 5-benylidene-1,2-dihydrochromeno[3,4-f]quinolines (4) were synthesized and tested in bioassays to evaluate their progestational activities, receptor- and tissue-selectivity profiles as selective progesterone receptor modulators (SPRMs). Most of the new analogues exhibited as highly potent progestins with more than 100-fold receptor selectivity over other steroid hormone receptors and LG120920 (7b) demonstrated tissue selectivity toward uterus and vagina versus breasts in a rodent model after oral administration.

View Article and Find Full Text PDF

A series of 1,2-dihydrochromeno[3,4-f]quinoline derivatives was synthesized and tested in biological assays to evaluate the nonsteroidal progesterone receptor modulator pharmacophore (4) as antiprogestins. A number of potent analogues were identified by modification of the substituents at the D-ring.

View Article and Find Full Text PDF

A series of 5-methylidene 1,2-dihydrochromeno[3,4-f]quinoline derivatives were synthesized and tested in biological assays to evaluate scope and limitations of the nonsteroidal SPRM pharmacophore (3). A number of orally available highly potent nonsteroidal modulators were identified by modification of the substituents at 5-methylidene position.

View Article and Find Full Text PDF

The syntheses of two labeled homologues of (2E,4E,6E)-7-(3,5-di-tert-butylphenyl)-3-methylocta-2,4,6-trienoic acid (ALRT1550, 2), [(13)CD(3)]ALRT1550 (3) and [(3)H]ALRT1550 (4), are described in this report. ALRT1550 is an exceptionally potent antiproliferative agent which is currently in phase I/II clinical trials for acute chemotherapy. Both homologues were prepared from commercially available 3,5-di-tert-butylbenzoic acid.

View Article and Find Full Text PDF