Publications by authors named "Dale B Bosco"

Article Synopsis
  • TREM2 is a receptor found in microglia, crucial for their functions like proliferation and phagocytosis, and plays a key role in neurodegenerative diseases.
  • Research using TREM2 knockout mice in a seizure model showed that lacking TREM2 worsened seizure pathology and increased the frequency of recurrent seizures.
  • In humans, lower levels of a microglial phagocytic marker, CD68, were associated with more severe seizure histories, suggesting that TREM2 and microglial phagocytosis are vital in epilepsy development.
View Article and Find Full Text PDF

Border-associated macrophages (BAMs) are tissue-resident macrophages that reside at the border of the central nervous system (CNS). Since BAMs originate from yolk sac progenitors that do not persist after birth, the means by which this population of cells is maintained is not well understood. Using two-photon microscopy and multiple lineage-tracing strategies, we determine that CCR2 monocytes are significant contributors to BAM populations following disruptions of CNS homeostasis in adult mice.

View Article and Find Full Text PDF

Microglial calcium signaling is rare in a baseline state but strongly engaged during early epilepsy development. The mechanism(s) governing microglial calcium signaling are not known. By developing an in vivo uridine diphosphate (UDP) fluorescent sensor, GRAB, we discovered that UDP release is a conserved response to seizures and excitotoxicity across brain regions.

View Article and Find Full Text PDF

In the central nervous system, triggering receptor expressed on myeloid cells 2 (TREM2) is exclusively expressed by microglia and is critical for microglial proliferation, migration, and phagocytosis. TREM2 plays an important role in neurodegenerative diseases, such as Alzheimer's disease and amyotrophic lateral sclerosis. However, little is known about the role TREM2 plays in epileptogenesis.

View Article and Find Full Text PDF

Background: Myeloid cells comprise up to 50% of the total tumor mass in glioblastoma (GBM) and have been implicated in promoting tumor progression and immunosuppression. Modulating the response of myeloid cells to the tumor has emerged as a promising new approach for cancer treatment. In this regard, we focus on the Triggering Receptor Expressed on Myeloid Cells 2 (TREM2), which has recently emerged as a novel immune modulator in peripheral tumors.

View Article and Find Full Text PDF

Microglia are key players in maintaining brain homeostasis and exhibit phenotypic alterations in response to epileptic stimuli. However, it is still relatively unknown if these alterations are pro- or anti-epileptic. To unravel this dilemma, we employed chemogenetic manipulation of microglia using the artificial Gi-Dreadd receptor within a kainic acid (KA) induced murine seizure model.

View Article and Find Full Text PDF

Microglia exhibit diverse phenotypes in various central nervous system disorders and metabolic pathways exert crucial effects on microglial activation and effector functions. Here, we discovered two novel distinct microglial clusters, functionally associated with enhanced phagocytosis (PEMs) and myelination (MAMs) respectively, in human patients with multiple sclerosis by integrating public snRNA-seq data. Microglia adopt a PEMs phenotype during the early phase of demyelinated lesions, predominated in pro-inflammatory responses and aggravated glycolysis, while MAMs mainly emerged during the later phase, with regenerative signatures and enhanced oxidative phosphorylation.

View Article and Find Full Text PDF

Background: Breast cancer is the most common cancer in women and the leading cause of female cancer deaths worldwide. Obesity causes chronic inflammation and is a risk factor for post-menopausal breast cancer and poor prognosis. Obesity triggers increased infiltration of macrophages into adipose tissue, yet little research has focused on the effects of macrophages in early stages of breast tumor development in obese patients.

View Article and Find Full Text PDF
Article Synopsis
  • Platelets, often seen as just clotting agents, actually play a surprising role in promoting tumor growth and can also inhibit liver cancer (HCC) in mice with non-alcoholic fatty liver disease (NAFLD).
  • The study showed that the anti-tumor effects of platelets come from their release of CD40L through a pathway involving the P2Y12 receptor, which helps activate CD8 T cells.
  • Unlike traditional anti-platelet medications like aspirin, which don't affect CD40L release, this research suggests that targeting platelets without blocking CD40L could benefit liver cancer patients with NAFLD.
View Article and Find Full Text PDF

Revascularization and angiogenesis, as substrates of sustained collateral circulation, play a crucial role in determining the severity and clinical outcome of acute ischemic stroke (AIS) due to large vessel occlusion (LVO). Developing an adjunct biomarker to help identify and monitor collateral status would aid stroke diagnosis and prognosis. To screen the potential biomarkers, proteomic analysis was performed in this study to identify those distinct plasma protein profiles in AIS due to LVO with different collateral status.

View Article and Find Full Text PDF

Triggering receptor expressed on myeloid cell 2 (TREM2) is linked to risk of neurodegenerative disease. However, the function of TREM2 in neurodegeneration is still not fully understood. Here, we investigated the role of microglial TREM2 in TAR DNA-binding protein 43 (TDP-43)-related neurodegeneration using virus-mediated and transgenic mouse models.

View Article and Find Full Text PDF

Amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig's disease, is an aggressive motor neuron degenerative disease characterized by selective loss of both upper and lower motor neurons. The mechanisms underlying disease initiation and progression are poorly understood. The involvement of nonmotor neuraxis emphasizes the contribution of glial cells in disease progress.

View Article and Find Full Text PDF

Background And Purpose: Neuromyelitis optica spectrum disorder (NMOSD) is mainly an anti-aquaporin 4 (anti-AQP4) autoantibodies-mediated idiopathic inflammatory demyelinating disease of the central nervous system. Systemic and local inflammatory responses play a key role in the pathophysiology of NMOSD. However, the role of the crucial immunomodulators CD4CD25 forkhead box P3 (Foxp3) regulatory T cells (Tregs) has not been investigated in NMOSD.

View Article and Find Full Text PDF

Spinal microglia are highly responsive to peripheral nerve injury and are known to be a key player in pain. However, there has not been direct evidence showing that selective microglial activation in vivo is sufficient to induce chronic pain. Here, we used optogenetic approaches in microglia to address this question employing CX3CR1creER/+: R26LSL-ReaChR/+ transgenic mice, in which red-activated channelrhodopsin (ReaChR) is inducibly and specifically expressed in microglia.

View Article and Find Full Text PDF

Neuromyelitis optica (NMO) is an autoantibody-triggered neuro-inflammatory disease which preferentially attacks the spinal cord and optic nerve. Its defining autoantibody is specific for the water channel protein, aquaporin-4 (AQP4), which primarily is localized at the end-feet of astrocytes. Histopathology studies of early NMO lesions demonstrated prominent activation of microglia, the resident immune sentinels of the central nervous system (CNS).

View Article and Find Full Text PDF

In response to various types of environmental and cellular stress, microglia rapidly activate and exhibit either pro- or anti-inflammatory phenotypes to maintain tissue homeostasis. Activation of microglia can result in changes in morphology, phagocytosis capacity, and secretion of cytokines. Furthermore, microglial activation also induces changes to cellular energy demand, which is dependent on the metabolism of various metabolic substrates including glucose, fatty acids, and amino acids.

View Article and Find Full Text PDF

Gliosis is a histopathological characteristic of epilepsy that comprises activated microglia and astrocytes. It is unclear whether or how crosstalk occurs between microglia and astrocytes in the evolution of epilepsy. Here, we report in a mouse model of status epilepticus, induced by intracerebroventricular injection of kainic acid (KA), sequential activation of microglia and astrocytes and their close spatial interaction in the hippocampal CA3 region.

View Article and Find Full Text PDF

Microglia play an important role in the central sensitization and chronic pain. However, a direct connection between microglial function and pain development in vivo remains incompletely understood. To address this issue, we applied chemogenetic approach by using CXCR1:R26 transgenic mice to enable expression of inhibitory Designer Receptors Exclusively Activated by Designer Drugs (Gi DREADD) in microglia.

View Article and Find Full Text PDF

Background: Multiple sclerosis (MS) is an immune-mediated demyelinated disease of the central nervous system. Activation of microglia is involved in the pathogenesis of myelin loss.

Objective: This study is focused on the role of Hv1 in regulating demyelination and microglial activation through reactive oxygen species (ROS) production after lysophosphatidylcholine (LPC)-mediated demyelination.

View Article and Find Full Text PDF

Microglia are the resident immune cells of the center nervous system and participate in various neurological diseases. Here we determined the function of microglia in epileptogenesis using microglial ablation approaches. Three different microglia-specific genetic tools were used, CX3CR1:R26, CX3CR1:R26, and CX3CR1:Csf1r mice.

View Article and Find Full Text PDF
Article Synopsis
  • Neuromyelitis optica (NMO) is a serious disease that affects the central nervous system and is caused by a specific antibody attacking brain cells that help with water control.
  • Researchers studied how this disease starts in mice and found that the damage depends on the amount of this antibody and involves special brain cells called microglia.
  • The study showed that microglia communicate with another type of brain cell called astrocytes, and this interaction may be important for understanding and treating NMO.
View Article and Find Full Text PDF

Epilepsy is a major neurological condition that affects millions of people globally. While a number of interventions have been developed to mitigate this condition, a significant number of patients are refractory to these treatments. Consequently, other avenues of research are needed.

View Article and Find Full Text PDF

Microglia dynamically survey the brain parenchyma. Microglial processes interact with neuronal elements; however, what role neuronal network activity plays in regulating microglial dynamics is not entirely clear. Most studies of microglial dynamics use either slice preparations or in vivo imaging in anesthetized mice.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session6hn636a1m4s9blsc25ta7h19vqf638ub): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once