Publications by authors named "Dale Ang"

Many proteins and peptides are increasingly being recognised to contain unfolded domains or populations that are key to their function, whether it is in ligand binding or material assembly. We report an approach to determine the secondary structure for proteins with suspected significant unfolded domains or populations using our neural network approach SOMSpec. We proceed by derandomizing spectra by removing fractions of random coil (RC) spectra prior to secondary structure fitting and then regenerating α-helical and β-sheet contents for the experimental proteins.

View Article and Find Full Text PDF

A protein's structure is the key to its function. As protein structure can vary with environment, it is important to be able to determine it over a wide range of concentrations, temperatures, formulation vehicles, and states. Robust reproducible validated methods are required for applications including batch-batch comparisons of biopharmaceutical products.

View Article and Find Full Text PDF

Understanding protein stability is critical for the application of enzymes in biotechnological processes. The structural basis for the stability of thermally adapted chitinases has not yet been examined. In this study, the amino acid sequences and X-ray structures of psychrophilic, mesophilic, and hyperthermophilic chitinases were analyzed using computational and molecular dynamics (MD) simulation methods.

View Article and Find Full Text PDF

The binding interactions of a series of square-planar platinum(II)-phenanthroline complexes of the type [Pt(P)(A)] [where P = variously methyl-substituted 1,10-phenanthroline (phen) and A = ethane-1,2-diamine (en)] were assessed with a G-quadruplex DNA (5'-TTG GGG GT-3', G4DNA) and a double-stranded DNA (5'-CGC GAA TTC GCG-3', dsDNA) sequence by ESI-MS. The results indicate a strong correlation between G4DNA affinity and increasing phenanthroline methyl substitution. Circular dichroism (CD) spectroscopy and molecular docking studies also support the finding that increased substitution of the phenanthroline ligand increased selectivity for G4DNA.

View Article and Find Full Text PDF

Background: Photodynamic therapy (PDT) is an increasingly prominent field in anticancer research. PDT agents are typically nontoxic in the absence of light and can be stimulated with nonionising irradiation to "activate" their cytotoxic effect. Photosensitzers are not classified as chemotherapy drugs although it is advantageous to control the toxicity of a drug through localised irradiation allowing for selective treatment.

View Article and Find Full Text PDF

Linear dichroism (LD) spectroscopy involves measuring the wavelength (or energy) dependence of the difference in absorption of light parallel and perpendicular to an orientation direction. It requires samples to have a net orientation. The aim of this review is to summarise some UV-visible linear dichroism (LD) methods that can be usefully applied to increase our understanding of biomacromolecules and their complexes that have a high aspect ratio.

View Article and Find Full Text PDF

The diverse anticancer utility of cisplatin has stimulated significant interest in the development of additional platinum-based therapies, resulting in several analogues receiving clinical approval worldwide. However, due to structural and mechanistic similarities, the effectiveness of platinum-based therapies is countered by severe side-effects, narrow spectrum of activity and the development of resistance. Nonetheless, metal complexes offer unique characteristics and exceptional versatility, with the ability to alter their pharmacology through facile modifications of geometry and coordination number.

View Article and Find Full Text PDF

This study reports a detailed biophysical analysis of the DNA binding and cytotoxicity of six platinum complexes (PCs). They are of the type [Pt(PL )(SS-dach)]Cl2 , where PL is a polyaromatic ligand and SS-dach is 1S,2S-diaminocyclohexane. The DNA binding of these complexes was investigated using six techniques including ultraviolet and fluorescence spectroscopy, linear dichroism, synchrotron radiation circular dichroism, isothermal titration calorimetry and mass spectrometry.

View Article and Find Full Text PDF

Four dinuclear terpyridineplatinum(II) (Pt-terpy) complexes were investigated for interactions with G-quadruplex DNA (QDNA) and duplex DNA (dsDNA) by synchrotron radiation circular dichroism (SRCD), fluorescent intercalator displacement (FID) assays and fluorescence resonance energy transfer (FRET) melting studies. Additionally, computational docking studies were undertaken to provide insight into potential binding modes for these complexes. The complexes demonstrated the ability to increase the melting temperature of various QDNA motifs by up to 17 °C and maintain this in up to a 600-fold excess of dsDNA.

View Article and Find Full Text PDF

The binding affinity of a series of square planar platinum(II) compounds of the type [Pt(A(L))(I(L))](2+), where A(L) is 1,2-diaminoethane and I(L) are 1,10-phenanthroline (phen), 4-methyl-1,10-phenanthroline (4Mephen), 5-methyl-1,10-phenanthroline (5Mephen), 4,7-dimethyl-1,10-phenanthroline (47Me2phen), 5,6-dimethyl-1,10-phenanthroline (56Me2phen) or 3,4,7,8-tetramethyl-1,10-phenanthroline (3478Me4phen) has been reinvestigated using Synchrotron Radiation Circular Dichroism (SRCD) spectroscopy. The additional peaks exhibited considerably greater intensity than those observed between 200 and 400 nm affording additional binding affinity determinations. In addition, the authors have reviewed the various mathematical approaches used to estimate equilibrium binding constants and thereby demonstrate that their mathematical approach, implemented with Wolfram Mathematica, has merit over other methods.

View Article and Find Full Text PDF

Increasing numbers of DNA structures are being revealed using biophysical, spectroscopic and genomic methods. The diversity of transition metal complexes is also growing, as the unique contributions that transition metals bring to the overall structure of metal complexes depend on the various coordination numbers, geometries, physiologically relevant redox potentials, as well as kinetic and thermodynamic characteristics. The vast range of ligands that can be utilised must also be considered.

View Article and Find Full Text PDF

Eight platinum(II) complexes with anticancer potential have been synthesised and characterised. These complexes are of the type [Pt(I(L))(A(L))](2+), where I(L) is either dipyrido[3,2-f:2',3'-h]quinoxaline (dpq) or 2,3-dimethyl-dpq (23Me2dpq) and A(L) is one of the R,R or S,S isomers of either 1,2-diaminocyclohexane (SS-dach or RR-dach) or 1,2-diaminocyclopentane (SS-dacp or RR-dacp). The CT-DNA binding of these complexes and a series of other complexes were assessed using fluorescent intercalator displacement assays, resulting in unexpected trends in DNA binding affinity.

View Article and Find Full Text PDF

Branching was detected in polyacrylates synthesised through radical polymerization via solution-state NMR, while inconsistencies have been reported for the determination of the molar mass of hydrophilic polyacrylates using aqueous-phase and organic-phase size-exclusion chromatography. In this work, poly(sodium acrylate)s, PNaAs, of various topologies were separated for the first time using free-solution capillary electrophoresis (CE). Free-solution CE does not separate the PNaAs by their molar mass, similarly to separations by liquid chromatography in the critical conditions, rather by different topologies (linear, star branched, and hyperbranched).

View Article and Find Full Text PDF