The aim of this study was to investigate the role of the nitric oxide (NO) system in ovarian function, by determining if arginine (Arg) supplementation impacts follicle number, cell proliferation, and expression of the NO system members in nutritionally compromised ewes. Ewes were randomly assigned into maintenance (C, 100% requirements), excess (O; 2xC), or restricted (U; 0.6xC) diets 8 weeks prior to Arg treatment.
View Article and Find Full Text PDFThe aim of this study was to evaluate angiopoietin (ANGPT) 1 and 2, and tyrosine-protein kinase receptor 2 (TIE2) expression in the corpora lutea (CL) of FSH-treated, or non-treated sheep administered arginine (Arg) or vehicle (saline, Sal), and fed a control (C), excess (O) or restricted (U) diet. Ewes from each dietary group were treated with Arg or Sal (experiment 1), and with FSH (experiment 2). Luteal tissues were collected at the early-, mid- and/or late-luteal phases of the estrous cycle.
View Article and Find Full Text PDFFollicle stimulating hormone (FSH) is a well characterized gonadotropin that controls primarily development and functions of ovarian follicles in mammalian species. FSH binds to a specific G protein-coupled receptor (FSHR) belonging to the glycoprotein hormone receptor family that plays an essential role in reproduction. Although the primary location of FSHR is in the gonads (mainly in ovarian follicles), FSHR protein and/or mRNA have also been detected in extragonadal female reproductive tissues including embryo, placenta, endometrium, cervix, ovarian cancer tissues, and/or endometriotic lesions in several species.
View Article and Find Full Text PDFTo evaluate expression of progesterone receptor (PGR) AB in follicle stimulating hormone (FSH)-treated or non-treated sheep administered with arginine (Arg) or saline (Sal) fed a control (C), excess (O) or restricted (U) diet, uterine tissues were collected at the early, mid and/or late luteal phases. In exp. 1, ewes from each diet were randomly assigned to one of two treatments, Arg or Sal administration three times daily from day 0 of the first estrous cycle until uterine tissue collection.
View Article and Find Full Text PDFFunctions of corpus luteum (CL) are influenced by numerous factors including hormones, growth and angiogenic factors, nutritional plane and dietary supplements such as arginine (Arg), a semi-essential amino acid and precursor for proteins, polyamines and nitric oxide (NO). The aim of this study was to determine if Arg supplementation to ewes fed different planes of nutrition influences: (1) progesterone (P4) concentrations in serum and luteal tissue, (2) luteal vascularity, cell proliferation, endothelial NO synthase (eNOS) and receptor (R) soluble guanylate cyclase β protein and mRNA expression and (3) luteal mRNA expression for selected angiogenic factors during the estrous cycle. Ewes (n = 111) were categorized by weight and randomly assigned to one of three nutritional planes: maintenance control (C), overfed (2× C) and underfed (0.
View Article and Find Full Text PDFIntroduction: Placental vascularity may be important in the development of fetal growth restriction (FGR). The overnourished adolescent ewe is a robust model of the condition, with ∼50% of offspring demonstrating FGR (birthweight >2 standard deviations below optimally-fed control mean). We studied whether placental vascularity, angiogenesis and glucose transport reflect FGR severity.
View Article and Find Full Text PDFThe aim of this study was to evaluate lipid droplet (LD) expression in uteri of FSH-treated or nontreated sheep administered with arginine (Arg) or vehicle (saline, Sal) and fed a control (C), excess (overfed, O) or restricted (underfed, U) diet. In experiment 1, ewes from each diet were randomly assigned to Arg or Sal treatments administered three times daily starting on Day 0 of the first estrous cycle until blood sample and uterine tissue collection at the early- or mid-luteal phase of the second estrous cycle or the late-luteal phase of the first estrous cycle. In experiment 2, ewes were injected twice daily with FSH on Days 13 to 15 of the first estrous cycle, and blood samples and uterine tissue were collected at the early- and mid-luteal phases of the second estrous cycle.
View Article and Find Full Text PDFAccumulation of lipid droplets (LD) in luteal cells likely is important for energy storage and steroidogenesis in the highly metabolically active corpus luteum (CL). The objective of this study was to determine the effect of plane of nutrition on progesterone (P4) secretion, and lipid droplet number and size in cultured ovine luteal cells. Ewes were randomly assigned to one of three nutritional groups: control (C; 100% NRC requirements, n=9), overfed (O; 2×C, n=12), or underfed (U; 0.
View Article and Find Full Text PDFThe aim was to evaluate the effects of nutritional plane on in vitro progesterone (P4) secretion by granulosa (G) cells cultured in the presence or absence of effectors of the nitric oxide (NO) system. Ewes were randomly assigned into three nutritional groups: control (C), overfed (O; 2 × C), or underfed (U; 0.6 × C).
View Article and Find Full Text PDFLow birthweight is a risk factor for neonatal mortality and adverse metabolic health, both of which are associated with inadequate prenatal adipose tissue development. In the present study, we investigated the impact of maternal undernutrition on the expression of genes that regulate fetal perirenal adipose tissue (PAT) development and function at gestation days 89 and 130 (term=145 days). Singleton fetuses were taken from adolescent ewes that were either fed control (C) intake to maintain adiposity throughout pregnancy or were undernourished (UN) to maintain conception weight but deplete maternal reserves (n=7/group).
View Article and Find Full Text PDFPreviously we reported increased umbilical artery blood flow in ewes supplemented with melatonin from mid- to late-pregnancy, while maternal nutrient restriction decreased uterine artery blood flow. To further unravel these responses, this study was designed to assess placental cell proliferation and vascularity following supplementation with melatonin or maternal nutrient restriction. For the first experiment, 31 primiparous ewes were supplemented with 5mg of melatonin per day (MEL) or no melatonin (CON) and allocated to receive 100% (adequate fed; ADQ) or 60% (restricted; RES) of their nutrient requirements from day 50 to 130 of gestation.
View Article and Find Full Text PDFThe aim of this study was to determine the effects of diet and arginine (Arg) treatment on serum concentrations of selected metabolites and metabolic and reproductive hormones in nonpregnant ewes. Sixty days before the onset of estrus (Day 0), Rambouillet ewes were randomly assigned to one of three dietary groups: maintenance control (C; N = 16; 100% National Research Council requirements), overfed (O; N = 16; 2 × C), or underfed (U; N = 16, 0.6 × C) to achieve and maintain three different body conditions during their estrous cycle(s).
View Article and Find Full Text PDFScrapie in sheep is spread laterally by placental transmission of an infectious misfolded form (PrPSc) of a normal prion protein (PrPC) used as a template in PrPSc formation. We hypothesized that PrPC would be expressed in uterine and placental tissues and estradiol-17β (E2) would affect uterine PrPC expression. PrPC expression was evaluated in the uterus of long-term ovariectomized (OVX) ewes treated with an E2 implant for 2-24 h and in uteroplacental tissues from day 20 to day 30 of pregnancy.
View Article and Find Full Text PDFThe aim of this study was to determine the effects of maternal diet with adequate (A) or high (H) selenium (Se) supplementation on ovarian and uterine characteristics, and onset of puberty in adolescent offspring. Sheep were fed a maintenance (M) diet with ASe or HSe levels from breeding to parturition. From Day 50 to parturition, a portion of the ewes from ASe and HSe groups was fed restricted (R, 60% of M) or excess (E, 140% of M) diet.
View Article and Find Full Text PDFThis review discusses the importance of placental vascular development, as reflected by placental angiogenesis and placental blood flow, to placental function in normal pregnancies. We then summarize our current understanding of how maternal stress, including inadequate maternal nutrition as well as the application of assisted reproductive technologies (ART), leads to compromised placental angiogenesis and function and the subsequent effects on fetal and neonatal growth and development. Finally, we discuss several promising therapeutic approaches to 'rescue' placental vascular development and function in compromised pregnancies, leading to improved pregnancy and postnatal outcomes.
View Article and Find Full Text PDFTo determine the effects of maternal supranutritional selenium (Se) supplementation and maternal nutritional plane on offspring growth potential, ewes were randomly assigned to 1 of 6 treatments in a 2 × 3 factorial arrangement [dietary Se (adequate Se; 9.5 μg/kg body weight vs. high Se; 81.
View Article and Find Full Text PDFThe aim of this study was to optimize a method to visualize tissue vascularity by perfusing the local vascular bed with a fluorescently labeled lectin, combined with immunofluorescent labeling of selected vascular/tissue markers. Ovaries with the pedicle were obtained from adult non-pregnant ewes. Immediately after collection, the ovarian artery was perfused with phosphate buffered saline (PBS) to remove blood cells, followed by perfusion with PBS containing fluorescently labeled Griffonia (Bandeiraea) simplicifolia (BS1) lectin.
View Article and Find Full Text PDFBackground: Objectives were to examine the effects of selenium (Se) supply and maternal nutritional plane during gestation on mammary gland growth, cellular proliferation, and vascularity at parturition and d 20 of lactation. Rambouillet primiparous ewes (n = 84) were allocated to treatments in a 2 x 3 factorial. Factors were dietary Se (adequate Se [ASe, 11.
View Article and Find Full Text PDFThe origin of embryos including those created through assisted reproductive technologies might have profound effects on placental and fetal development, possibly leading to compromised pregnancies associated with poor placental development. To determine the effects of embryo origin on fetal size, and maternal and fetal placental cellular proliferation and global methylation, pregnancies were achieved through natural mating (NAT), or transfer of embryos generated through in vivo (NAT-ET), IVF, or in vitro activation (IVA). On Day 22 of pregnancy, fetuses were measured and placental tissues were collected to immunologically detect Ki67 (a marker of proliferating cells) and 5-methyl cytosine followed by image analysis, and determine mRNA expression for three DNA methyltransferases.
View Article and Find Full Text PDFTo investigate the effects of maternal selenium (Se) supplementation and nutritional intake during gestation on hormone changes, percentage body weight (BW) change, and organ mass in neonatal lambs, ewes were allocated to differing Se levels (adequate Se (ASe, 11.5 μg/kg BW) or high Se (HSe, 77.0 μg/kg BW)) initiated at breeding and nutritional intake (60% (RES), 100% (CON), or 140% (HIGH) of NRC requirements) initiated at day 40 of gestation.
View Article and Find Full Text PDFTo characterize early fetal placental development, gravid uterine tissues were collected from pregnant ewes every other day from day 16 to 30 after mating. Determination of 1) cell proliferation was based on Ki67 protein immunodetection; 2) global methylation was based on 5-methyl-cytosine (5mC) expression and mRNA expression for DNA methyltransferases (DNMTs) 1, 3a, and 3b; and 3) vascular development was based on smooth muscle cell actin immunolocalization and on mRNA expression of several factors involved in the regulation of angiogenesis in fetal membranes (FMs). Throughout early pregnancy, the labeling index (proportion of proliferating cells) was very high (21%) and did not change.
View Article and Find Full Text PDFPlacental vascular development (angiogenesis) is critical for placental function and thus for normal embryonic/fetal growth and development. Specific environmental factors or use of assisted reproductive techniques may result in poor placental angiogenesis, which may contribute to embryonic losses and/or fetal growth retardation. Uterine tissues were collected on days 14, 16, 18, 20, 22, 24, 26, 28, and 30 after mating and on day 10 after estrus (nonpregnant controls) to determine vascular development and expression of several factors involved in the regulation of angiogenesis in the endometrium.
View Article and Find Full Text PDFMaternal and fetal microvasculature was studied in ewes at days 50, 90 and 130 of gestation using microvascular corrosion casting and scanning electron microscopy. Microvascular corrosion casts of caruncles at day 50 were cup-shaped with a centrally located cavity. Branches of radial arteries entered the caruncle from its base and ramified on the maternal surface of the caruncle.
View Article and Find Full Text PDFThe importance of the placenta and its vascular development to fetal growth and development has been appreciated since ancient times. Based on numerous studies in humans and animal model organisms in the last 2-3 decades, normal placental angiogenesis is critically important to ensure adequate blood flow to the placenta and therefore to provide the substrates that support normal fetal growth. Placental angiogenesis is abnormal at term in compromised pregnancies (those in which fetal growth is altered), including those resulting from maternal nutritional or environmental stress, maternal age, increased numbers of fetuses, maternal or fetal genotype, or the use of assisted reproductive technologies (e.
View Article and Find Full Text PDF