Publications by authors named "Dalai Yan"

Uncoupling of biological nitrogen fixation from ammonia assimilation is a prerequisite step for engineering ammonia excretion and improvement of plant-associative nitrogen fixation. In this study, we have identified an amino acid substitution in glutamine synthetase, which provides temperature sensitive biosynthesis of glutamine, the intracellular metabolic signal of the nitrogen status. As a consequence, negative feedback regulation of genes and enzymes subject to nitrogen regulation, including nitrogenase is thermally controlled, enabling ammonia excretion in engineered Escherichia coli and the plant-associated diazotroph Klebsiella oxytoca at 23 °C, but not at 30 °C.

View Article and Find Full Text PDF

Unlabelled: A fundamental question in microbial physiology concerns why organisms prefer certain nutrients to others. For example, among different nitrogen sources, ammonium is the preferred nitrogen source, supporting fast growth, whereas alternative nitrogen sources, such as certain amino acids, are considered to be poor nitrogen sources, supporting much slower exponential growth. However, the physiological/regulatory logic behind such nitrogen dietary choices remains elusive.

View Article and Find Full Text PDF

The cyclic AMP (cAMP)-dependent catabolite repression effect in Escherichia coli is among the most intensely studied regulatory processes in biology. However, the physiological function(s) of cAMP signalling and its molecular triggers remain elusive. Here we use a quantitative physiological approach to show that cAMP signalling tightly coordinates the expression of catabolic proteins with biosynthetic and ribosomal proteins, in accordance with the cellular metabolic needs during exponential growth.

View Article and Find Full Text PDF

Members of the Amt family of channels mediate the transport of ammonium. The form of ammonium, NH3 or NH4(+), carried by these proteins remains controversial, and the mechanism by which they select against K(+) ions is unclear. We describe here a set of Escherichia coli AmtB proteins carrying mutations at the conserved twin-histidine site within the conduction pore that have altered substrate specificity and now transport K(+).

View Article and Find Full Text PDF

The efficient sequestration of nutrients is vital for the growth and survival of microorganisms. Some nutrients, such as CO2 and NH3, are readily diffusible across the cell membrane. The large membrane permeability of these nutrients obviates the need of transporters when the ambient level is high.

View Article and Find Full Text PDF

2-Oxoglutarate is located at the junction between central carbon and nitrogen metabolism, serving as an intermediate for both. In nitrogen metabolism, 2-oxoglutarate acts as both a carbon skeletal carrier and an effector molecule. There have been only sporadic reports of its internal concentrations.

View Article and Find Full Text PDF

Glutamine synthetase (GS) is the central enzyme for nitrogen assimilation in Escherichia coli and is subject to reversible adenylylation (inactivation) by a bifunctional GS adenylyltransferase/adenylyl-removing enzyme (ATase). In vitro, both of the opposing activities of ATase are regulated by small effectors, most notably glutamine and 2-oxoglutarate. In vivo, adenylyltransferase (AT) activity is critical for growth adaptation when cells are shifted from nitrogen-limiting to nitrogen-excess conditions and a rapid decrease of GS activity by adenylylation is needed.

View Article and Find Full Text PDF

DNA ligases are the enzymes essential for DNA replication, repair and recombination in all organisms. The bacterial DNA ligases involved in DNA replication require NAD(+) for activity, but eukaryotic and viral DNA ligases require ATP. Because of their essential nature, unique structures and widespread existence in nature, bacterial DNA ligases represent a class of valuable targets for identifying novel and selective antibacterial agents.

View Article and Find Full Text PDF

Rifamycins have proven efficacy in the treatment of persistent bacterial infections. However, the frequency with which bacteria develop resistance to rifamycin agents restricts their clinical use to antibiotic combination regimens. In a program directed toward the synthesis of rifamycins with a lower propensity to elicit resistance development, a series of compounds were prepared that covalently combine rifamycin and quinolone pharmacophores to form stable hybrid antibacterial agents.

View Article and Find Full Text PDF

We present data from antimicrobial assays performed in vitro that pertain to the potential clinical utility of a novel rifamycin-quinolone hybrid antibiotic, CBR-2092, for the treatment of infections mediated by gram-positive cocci. The MIC(90)s for CBR-2092 against 300 clinical isolates of staphylococci and streptococci ranged from 0.008 to 0.

View Article and Find Full Text PDF

The BBK32 protein binds to host extracellular ligand fibronectin and contributes to the pathogenesis of Borrelia burgdorferi. Here we showed that expression of the BBK32 gene is influenced by multiple environmental factors and that its regulation is governed by the response regulator Rrp2 and RpoN-RpoS (sigma(54)-sigma(S)) sigma cascade in B. burgdorferi.

View Article and Find Full Text PDF

We report herein the preparation and anti-staphylococcal activity of a series of novel 11-deoxy-11-hydroxyiminorifamycins. Many of the compounds synthesized exhibit potent activity against wild-type Staphylococcus aureus with MICs equivalent to, or better than, rifamycin reference agents. In addition, some of the compounds retain potent activity against an intermediate rifamycin-resistant strain of Staphylococcus aureus.

View Article and Find Full Text PDF

The central nitrogen metabolic circuit in enteric bacteria consists of three enzymes: glutamine synthetase, glutamate synthase (GOGAT), and glutamate dehydrogenase (GDH). With the carbon skeleton provided by 2-oxoglutarate, ammonia/ammonium (NH(4)(+)) is assimilated into two central nitrogen intermediates, glutamate and glutamine. Although both serve as nitrogen donors for all biosynthetic needs, glutamate and glutamine play different roles.

View Article and Find Full Text PDF

A novel series of spirorifamycins was synthesized and their antibacterial activity evaluated both in vitro and in vivo. This new series of rifamycins shows excellent activity against Staphylococcus aureus that is equivalent to rifabutin. However, some compounds of the series exhibit lower MICs than rifabutin against rifampin-resistant strains of S.

View Article and Find Full Text PDF

A novel series of 3-morpholino rifamycins in which the C25 acetate group was replaced by a carbamate group were prepared and found to exhibit significantly improved antimicrobial activity than rifampin against Mycobacterium smegmatis. Further characterization of such compounds suggests that relatively large groups attached to the rifamycin core via a C25 carbamate linkage prevent inactivation via ribosylation of the C23 alcohol as catalyzed by the endogenous rifampin ADP-ribosyl transferase of M. smegmatis.

View Article and Find Full Text PDF

Bacterial histidine kinases have been proposed as targets for the discovery of new antibiotics, yet few specific inhibitors of bacterial histidine kinases have been reported. We report here a novel thienopyridine (TEP) compound that inhibits bacterial histidine kinases competitively with respect to ATP but does not comparably inhibit mammalian serine/threonine kinases. Although it partitions into membranes and does not inhibit the growth of bacterial or mammalian cells, TEP could serve as a starting compound for a new class of histidine kinase inhibitors with antibacterial activity.

View Article and Find Full Text PDF

Transcription by sigma54 RNA polymerase depends on activators that contain ATPase domains of the AAA+ class. These activators, which are often response regulators of two-component signal transduction systems, remodel the polymerase so that it can form open complexes at promoters. Here, we report the first crystal structures of the ATPase domain of an activator, the NtrC1 protein from the extreme thermophile Aquifex aeolicus.

View Article and Find Full Text PDF

Bacterial receiver domains mediate the cellular response to environmental changes through conformational changes induced by phosphorylation of a conserved aspartate residue. While the structures of several activated receiver domains have recently been determined, there is substantial variation in the conformational changes occurring upon activation. Here we present the high-resolution structure of the activated NtrC receiver domain (BeF(3)(-)-NtrC(r) complex) determined using NMR data, including residual dipolar couplings, yielding a family of structures with a backbone rmsd of 0.

View Article and Find Full Text PDF

GlnD is a pivotal protein in sensing intracellular levels of fixed nitrogen and has been best studied in enteric bacteria, where it reversibly uridylylates two related proteins, PII and GlnK. The uridylylation state of these proteins determines the activities of glutamine synthetase (GS) and NtrC. Results presented here demonstrate that glnD is an essential gene in Azotobacter vinelandii.

View Article and Find Full Text PDF