Bone fracture repair initiates by periosteal expansion. The periosteum is typically quiescent, but upon fracture, periosteal cells proliferate and contribute to bone fracture repair. The expansion of the periosteum is regulated by gene transcription; however, the molecular mechanisms behind periosteal expansion are unclear.
View Article and Find Full Text PDFSevere lung injury causes airway basal stem cells to migrate and outcompete alveolar stem cells, resulting in dysplastic repair. We found that this "stem cell collision" generates an injury-induced tissue niche containing keratin 5 epithelial cells and plastic Pdgfra mesenchymal cells. Single-cell analysis revealed that the injury-induced niche is governed by mesenchymal proliferation and Notch signaling, which suppressed Wnt/Fgf signaling in the injured niche.
View Article and Find Full Text PDFMaintenance of the cellular boundary between airway and alveolar compartments during homeostasis and after injury is essential to prohibit pathological plasticity which can reduce respiratory function. Lung injury and disease can induce either functional alveolar epithelial regeneration or dysplastic formation of keratinized epithelium which does not efficiently contribute to gas exchange. Here we show that Sox2 preserves airway cell identity and prevents fate changes into either functional alveolar tissue or pathological keratinization following lung injury.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
May 2023
Cells integrate mechanical cues to direct fate specification to maintain tissue function and homeostasis. While disruption of these cues is known to lead to aberrant cell behavior and chronic diseases, such as tendinopathies, the underlying mechanisms by which mechanical signals maintain cell function are not well understood. Here, we show using a model of tendon de-tensioning that loss of tensile cues in vivo acutely changes nuclear morphology, positioning, and expression of catabolic gene programs, resulting in subsequent weakening of the tendon.
View Article and Find Full Text PDFChondrocyte phenotype is preserved when cells are round and the actin cytoskeleton is cortical. Conversely, these cells rapidly dedifferentiate in vitro with increased mechanoactive Rho signaling, which increases cell size and causes large actin stress fiber to form. While the effects of Rho on chondrocyte phenotype are well established, the molecular mechanism is not yet fully elucidated.
View Article and Find Full Text PDFPulmonary fibroblasts are the primary producers of extracellular matrix (ECM) in the lungs, and their pathogenic activation drives scarring and loss of lung function in idiopathic pulmonary fibrosis (IPF). This uncontrolled production of ECM is stimulated by mechanosignaling and transforming growth factor beta 1 (TGF-1) signaling that together promote transcriptional programs including Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ). G protein-coupled receptors (GPCRs) that couple to G s have emerged as pharmacological targets to inactivate YAP/TAZ signaling and promote lung fibrosis resolution.
View Article and Find Full Text PDFVascular dysfunction is a hallmark of chronic diseases in elderly. The contribution of the vasculature to lung repair and fibrosis is not fully understood. Here, we performed an epigenetic and transcriptional analysis of lung endothelial cells (ECs) from young and aged mice during the resolution or progression of bleomycin-induced lung fibrosis.
View Article and Find Full Text PDFIdiopathic pulmonary fibrosis (IPF) is an aging-associated disease characterized by myofibroblast accumulation and progressive lung scarring. To identify transcriptional gene programs driving persistent lung fibrosis in aging, we performed RNA-Seq on lung fibroblasts isolated from young and aged mice during the early resolution phase after bleomycin injury. We discovered that, relative to injured young fibroblasts, injured aged fibroblasts exhibited a profibrotic state characterized by elevated expression of genes implicated in inflammation, matrix remodeling, and cell survival.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
January 2022
Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) are transcription cofactors implicated in the contractile and profibrotic activation of fibroblasts. Fibroblast contractile function is important in alveologenesis and in lung wound healing and fibrosis. As paralogs, YAP and TAZ may have independent or redundant roles in regulating transcriptional programs and contractile function.
View Article and Find Full Text PDFMatrix stiffness is a central regulator of fibroblast function. However, the transcriptional mechanisms linking matrix stiffness to changes in fibroblast phenotype are incompletely understood. Here, we evaluated the effect of matrix stiffness on genome-wide chromatin accessibility in freshly isolated lung fibroblasts using ATAC-seq.
View Article and Find Full Text PDFIdiopathic pulmonary fibrosis (IPF) is a progressive disease thought to result from impaired lung repair following injury and is strongly associated with aging. While vascular alterations have been associated with IPF previously, the contribution of lung vasculature during injury resolution and fibrosis is not well understood. To compare the role of endothelial cells (ECs) in resolving and non-resolving models of lung fibrosis, we applied bleomycin intratracheally to young and aged mice.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
May 2020
Idiopathic pulmonary fibrosis (IPF) results in scarring of the lungs by excessive extracellular matrix (ECM) production. Resident fibroblasts are the major cell type involved in ECM deposition. The biochemical pathways that facilitate pathological fibroblast activation leading to aberrant ECM deposition are not fully understood.
View Article and Find Full Text PDFBackground: Injuries in the musculoskeletal system, such as tendon and ligament ruptures, are challenging to manage and often require surgical reconstructions with limited long-term success. Thus, characterizations of these tissues are urgently needed to better understand cellular mechanisms that regulate tissue homeostasis and healing. Explant culturing systems allow for ex vivo analysis of tissues in an environment that mimics the native microenvironment in vivo.
View Article and Find Full Text PDFTissue fibrosis is characterized by uncontrolled deposition and diminished clearance of fibrous connective tissue proteins, ultimately leading to organ scarring. Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) have recently emerged as pivotal drivers of mesenchymal cell activation in human fibrosis. Therapeutic strategies inhibiting YAP and TAZ have been hindered by the critical role that these proteins play in regeneration and homeostasis in different cell types.
View Article and Find Full Text PDFTissue fibrosis is a chronic disease driven by persistent fibroblast activation that has recently been linked to epigenetic modifications. Here, we screened a small library of epigenetic small-molecule modulators to identify compounds capable of inhibiting or reversing TGFβ-mediated fibroblast activation. We identified pracinostat, an HDAC inhibitor, as a potent attenuator of lung fibroblast activation and confirmed its efficacy in patient-derived fibroblasts isolated from fibrotic lung tissue.
View Article and Find Full Text PDFIdiopathic pulmonary fibrosis (IPF) is a fatal ageing-related disease linked to mitochondrial dysfunction. The present study aimed to determine whether peroxisome proliferator activated receptor gamma co-activator 1-alpha (, encoding PGC1α), a master regulator of mitochondrial biogenesis, is diminished in IPF and controls pathologic fibroblast activation. Primary human IPF, control lung fibroblasts and fibroblasts sorted from bleomycin-injured mice were used to evaluate the expression and function of PGC1α.
View Article and Find Full Text PDFPulmonary fibrosis is a devastating disease characterized by accumulation of activated fibroblasts and scarring in the lung. While fibroblast activation in physiological wound repair reverses spontaneously, fibroblast activation in fibrosis is aberrantly sustained. Here we identified histone 3 lysine 9 methylation (H3K9me) as a critical epigenetic modification that sustains fibroblast activation by repressing the transcription of genes essential to returning lung fibroblasts to an inactive state.
View Article and Find Full Text PDFAm J Respir Cell Mol Biol
November 2019
Reciprocal epithelial-mesenchymal interactions are pivotal in lung development, homeostasis, injury, and repair. Organoids have been used to investigate such interactions, but with a major focus on epithelial responses to mesenchyme and less attention to epithelial effects on mesenchyme. In the present study, we used nascent organoids composed of human and mouse lung epithelial and mesenchymal cells to demonstrate that healthy lung epithelium dramatically represses transcriptional, contractile, and matrix synthetic functions of lung fibroblasts.
View Article and Find Full Text PDFAm J Respir Cell Mol Biol
January 2019
Adipose-derived mesenchymal stem cells (AMSCs) offer potential as a therapeutic option for clinical applications in musculoskeletal regenerative medicine because of their immunomodulatory functions and capacity for trilineage differentiation. In preparation for a phase I clinical trial using AMSCs to treat patients with osteoarthritis, we carried out preclinical studies to assess the safety of human AMSCs within the intra-articular joint space. Culture-expanded human AMSCs grown in human platelet-lysate were delivered via intra-articular injections into normal healthy rabbit knees and knees at risk for the development of osteoarthritis after bilateral medial anterior hemimeniscectomy.
View Article and Find Full Text PDFPreservation of osteochondral allografts used for transplantation is critical to ensure favorable outcomes for patients after surgical treatment of cartilage defects. To study the biological effects of protocols currently used for cartilage storage, we investigated differences in gene expression between stored allograft cartilage and fresh cartilage from living donors using high throughput molecular screening strategies. We applied next generation RNA sequencing (RNA-seq) and real-time reverse transcription quantitative polymerase chain reaction (RT-qPCR) to assess genome-wide differences in mRNA expression between stored allograft cartilage and fresh cartilage tissue from living donors.
View Article and Find Full Text PDFObjective: To assess the biological effects of passage through clinically relevant needles on the viability and metabolic activity of culture-expanded, human adipose tissue-derived mesenchymal stromal/stem cells (AMSCs).
Design: Prospective observational pilot study.
Setting: Academic medical center.