Necroptosis plays a crucial role in the progression of various diseases and has gained substantial attention for its potential to activate antitumor immunity. However, the complex signaling networks that regulate necroptosis have made it challenging to fully understand its mechanisms and translate this knowledge into therapeutic applications. To address these challenges, an optogenetically activatable necroptosis system is developed that allows for precise spatiotemporal control of key necroptosis regulators, bypassing complex upstream signaling processes.
View Article and Find Full Text PDFIs ARID1A a victim of MSI-induced genomic instability, or is it an architect? This article aims to answer from a pathological perspective and give readers a balanced view.
View Article and Find Full Text PDFThere has been a persistent demand for an innovative modality in real-time histologic imaging, distinct from the conventional frozen section technique. We developed an artificial intelligence-driven real-time evaluation model for gastric cancer tissue using confocal laser endomicroscopic system. The remarkable performance of the model suggests its potential utilization as a standalone modality for instantaneous histologic assessment and as a complementary tool for pathologists' interpretation.
View Article and Find Full Text PDFNicotinamide phosphoribosyltransferase (NAMPT) is a metabolic enzyme with key roles in inflammation. Previous studies have examined the consequences of its upregulated expression in cancer cells themselves, but studies are limited with respect to its role in the other cells within the tumor microenvironment (TME) during colorectal cancer (CRC) progression. Using single-cell RNA sequencing (scRNA-seq) data, it is founded that NAMPT is highly expressed in SPP1 tumor-associated macrophages (TAMs), a unique subset of TAMs associated with immunosuppressive activity.
View Article and Find Full Text PDFStromal fibrosis in cancer is usually associated with poor prognosis and chemotherapy resistance. It is thought to be caused by fibroblasts; however, the exact mechanism is not yet well understood. The study aimed to identify lineage-specific cancer-associated fibroblast (CAF) subgroup and their associations with extracellular matrix remodeling and clinical significances in various tumor types using single-cell and bulk RNA sequencing data.
View Article and Find Full Text PDFConsidering the critical roles of cancer-associated fibroblasts (CAFs) in pancreatic cancer, recent studies have attempted to incorporate stromal elements into organoid models to recapitulate the tumor microenvironment. This study aimed to evaluate the feasibility of patient-derived organoid (PDO) and CAF cultures by using single-pass endoscopic ultrasound-guided fine-needle biopsy (EUS-FNB) samples from prospectively enrolled pancreatic cancer patients. The obtained samples were split into two portions for PDO and CAF cultures.
View Article and Find Full Text PDFEstrogen signaling has been extensively studied, especially in cancers that express estrogen receptor alpha (ERα). However, little is known regarding the effect of estrogen on cancer-associated fibroblasts (CAFs). Here, we explored the role of estrogen signaling of CAFs in gastric cancer (GC) progression.
View Article and Find Full Text PDFReceptor-interacting protein kinase 3 (RIPK3) is the primary regulator of necroptotic cell death. RIPK3 expression is often silenced in various cancer cells, which suggests that it may have tumor suppressor properties. However, the exact mechanism by which RIPK3 negatively regulates cancer development and progression remains unclear.
View Article and Find Full Text PDFBiochem Biophys Res Commun
July 2022
miRNA (miR)-4742-5p is a recently identified microRNA regarding progression and metastasis in gastric cancer (GC). However, the biological function of this novel miRNA is largely unknown. We identified that the miR-4742-5p expression level was variably increased in GC cell lines.
View Article and Find Full Text PDFPancreatic cancer is a devastating disease and is highly resistant to anticancer drugs because of its complex microenvironment. Cancer-associated fibroblasts (CAFs) are an important source of extracellular matrix (ECM) components, which alter the physical and chemical properties of pancreatic tissue, thus impairing effective intratumoral drug delivery and resulting in resistance to conventional chemotherapy. The objective of this study was to develop a new cancer organoid model, including a fibrous tumor microenvironment (TME) using CAFs.
View Article and Find Full Text PDFSlug is a transcription factor belonging to the slug/snail superfamily. The protein is involved in embryonic development and epithelial-mesenchymal transition of tumors. Slug is also under temporal regulation during cell cycle.
View Article and Find Full Text PDFThe aim of the study was to investigate the clinical significance of various histomorphologic findings related to mucosal inflammation in negative appendectomy. We reviewed histopathologic findings of 118 negative appendectomies and correlated them with the appendicitis inflammatory response (AIR) score and appendiceal diameter. Among 118 patients with negative appendectomy, 94 (80%), 73 (78%) and 89 (75%) patients displayed mucosal inflammation, high neutrophil score (neutrophil count ≥10/5 high power field and surface epithelial flattening, respectively.
View Article and Find Full Text PDFBackground: Necroptosis is emerging as a new target for cancer immunotherapy as it is now recognized as a form of cell death that increases tumor immunogenicity, which would be especially helpful in treating immune-desert tumors. De novo synthesis of inflammatory proteins during necroptosis appears especially important in facilitating increased anti-tumor immune responses. While late-stage transcription mediated by NF-κB during cell death is believed to play a role in this process, it is otherwise unclear what cell signaling events initiate this transactivation of inflammatory genes.
View Article and Find Full Text PDFBackground And Aim: Transpapillary biliary forceps biopsy (TBFB) is a common method to obtain histological evidence for the differential diagnosis of biliary stricture. This study aimed to evaluate the factors associated with a positive cancer diagnosis from TBFB and the number of tissue samples required to increase the diagnostic yield in patients with malignant biliary strictures.
Methods: A total of 376 patients who underwent TBFB for investigation of biliary stricture were included.
Background: Despite the promising preclinical antitumor activity of MET-targeting therapies, most clinical trials have failed. We introduced a new concept of quantitation of stroma-induced hepatocyte growth factor (HGF) to assess the actual MET signalling activity in gastric cancer (GC).
Methods: We treated serially diluted HGF and conditioned media (CM) from cancer-associated fibroblasts (CAFs) on low MET-expressing cancer cells and investigated the phenotypical and signalling changes.
Although a certain proportion of intramucosal carcinomas (IMCs) of the stomach does metastasize, the majority of patients are currently treated with endoscopic resection without lymph node dissection, and this potentially veils any existing metastasis and may put some patients in danger. In this regard, biological markers from the resected IMC that can predict metastasis are warranted. Here, we discovered unique miRNA expression profiles that consist of 21 distinct miRNAs that are specifically upregulated (miR-628-5p, miR-1587, miR-3175, miR-3620-5p, miR-4459, miR-4505, miR-4507, miR-4720-5p, miR-4742-5p, and miR-6779-5p) or downregulated (miR-106b-3p, miR-125a-5p, miR-151b, miR-181d-5p, miR-486-5p, miR-500a-3p, miR-502-3p, miR-1231, miR-3609, and miR-6831-5p) in metastatic (M)-IMC compared to nonmetastatic (N)-IMC, or nonneoplastic gastric mucosa.
View Article and Find Full Text PDFTumor-promoting inflammation is a hallmark of cancer and is highly associated with tumor progression, angiogenesis, and metastasis. Tumor-associated macrophages (TAMs) are major drivers of tumor-promoting inflammation, but due to the complexity of the tumor microenvironment, the detailed regulatory mechanisms are still under investigation. Here, we investigated a novel role for transglutaminase 2 (TGM2) in the development of tumor-promoting inflammation and recruitment of TAMs to gastric cancer (GC) tissues.
View Article and Find Full Text PDFAppl Immunohistochem Mol Morphol
February 2020