Publications by authors named "Dake Zhang"

Cervical lymph node (LN) metastasis is highly prevalent in thyroid cancer (TC). However, the lack of diagnostic modalities that enable real-time assessment of LN metastasis remains a challenge in providing efficient clinical decision-making and optimal patient care. Sodium-ascorbate co-transporters (SVCTs) have shown high expression levels in TC, presenting a potential target for visualizing LN metastasis.

View Article and Find Full Text PDF

Background: Lichen sclerosus (LS) is a chronic inflammatory disease affecting skin and mucosal tissues, particularly external genitalia, with a risk of cancer. Its etiology is unknown, possibly involving immune dysregulation and inflammation.

Methods: Study used DNA methylation (DNAme) and single-cell RNA sequencing (scRNA-seq) to compare LS with normal skin.

View Article and Find Full Text PDF

Background: Pancreatic adenocarcinoma (PDAC) exhibits a complex microenvironment with diverse cell populations influencing patient prognosis. Single-cell RNA sequencing (scRNA-seq) was used to identify prognosis-related cell types, and DNA methylation (DNAm)-based models were developed to predict outcomes based on their cellular characteristics.

Methods: We integrated scRNA-seq, bulk data, and clinical information to identify key cell populations associated with prognosis.

View Article and Find Full Text PDF

Metallic Pd has been proved highly promising when paired with Cu for industrially important acetylene semi-hydrogenation. Herein, we demonstrate that high-surface-area siloxene can feasibly enable alloying between Pd and Cu room-temperature reduction with Si-H bonds. Unprecedentedly small Cu nanoparticles with isolated Pd were loaded on siloxene, addressing the core problem of low selectivity of Pd and low activity of Cu.

View Article and Find Full Text PDF

Recently, a novel radiohybrid tracer [F]Lu-LuFL targeting the fibroblast activation protein (FAP) has been developed for PET imaging of solid tumors. This tracer has shown promising results, prompting us to conduct a first-in-human study to evaluate its efficacy for PET imaging of FAP in human body. In order to facilitate the routine production and clinical application of [F]Lu-LuFL, a straightforward and efficient automated synthesis is described.

View Article and Find Full Text PDF

Oxidative dehydrogenation of propane (ODHP) is a promising technique for producing propene due to its low operative temperature and coke-resistant feature. Recently, boron-based catalysts have been widely investigated for ODHP owing to their brilliant performance. Herein, we report that boron in the form of nanosheets can be prepared feasibly by exfoliating layered MgB with hydrochloric acid, and can efficiently and stably catalyze ODHP.

View Article and Find Full Text PDF

Background: Analyzing meningioma of distinct pathological types at the single-cell level can provide new and valuable insights into the specific biological mechanisms of each cellular subpopulation, as well as their vital interplay within the tumor microenvironment.

Methods: We recruited patients diagnosed with four distinct types of meningioma and performed single-cell RNA sequencing on their tumor samples, concurrently analyzing a publicly available dataset for comparison. Next, we separated the cells into discrete clusters and identified their unique identities.

View Article and Find Full Text PDF

Oxidative dehydrogenation of propane (ODHP) is a promising process for producing propene. Recently, some boron-based catalysts have exhibited excellent olefin selectivity in ODHP. However, their complex synthetic routes and poor stability under high-temperature reaction conditions have hindered their practical application.

View Article and Find Full Text PDF

DNA methylation (DNAme) alterations are known to initiate from the precancerous stage of tumorigenesis. Herein, we investigated the global and local patterns of DNAme perturbations in tumorigenesis by analysing the genome-wide DNAme profiles of the cervix, colorectum, stomach, prostate, and liver at precancerous and cancer stages. We observed global hypomethylation in tissues of both two stages, except for the cervix, whose global DNAme level in normal tissue was lower than that of the other four tumour types.

View Article and Find Full Text PDF

Programmed cell death (PCD) resistance is a key driver of cancer occurrence and development. The prognostic relevance of PCD-related genes in hepatocellular carcinoma (HCC) has attracted considerable attention in recent years. However, there is still a lack of efforts to compare the methylation status of different types of PCD genes in HCC and their roles in its surveillance.

View Article and Find Full Text PDF

Purpose: To investigate the different clinical and cytogenetic features of skull base meningiomas (SBMs) and non-SBMs (NSBMs).

Methods: We conducted a retrospective study on a series of 316 patients with primary intracranial meningiomas. The t-test and the Chi-square test were used to analyze the differences between 194 SBMs and 122 NSBMs.

View Article and Find Full Text PDF

Hypertrophic cardiomyopathy (HCM) is the most common inherited heart disease. However, a detailed DNA methylation (DNAme) landscape has not yet been elucidated. Our study combined DNAme and transcriptome profiles for HCM myocardium and identify aberrant DNAme associated with altered myocardial function in HCM.

View Article and Find Full Text PDF

Purpose: A series of radiotracers targeting fibroblast activation protein (FAP) with great pharmacokinetics have been developed for cancer diagnosis and therapy. Nevertheless, the use of dominant PET tracers, gallium-68-labeled FAPI derivatives, was limited by the short nuclide half-life and production scale, and the therapeutic tracers exhibited rapid clearance and insufficient tumor retention. In this study, we developed a FAP targeting ligand, LuFL, containing organosilicon-based fluoride acceptor (SiFA) and DOTAGA chelator, capable of labeling fluorine-18 and lutetium-177 in one molecular with simple and highly efficient labeling procedure, to achieve cancer theranostics.

View Article and Find Full Text PDF

Driving metal-cluster-catalyzed high-temperature chemical reactions by sunlight holds promise for the development of negative-carbon-footprint industrial catalysis, which has yet often been hindered by the poor ability of metal clusters to harvest and utilize the full spectrum of solar energy. Here, we report the preparation of MoTiC MXene-supported Ru clusters (Ru/MoTiC) with pronounced broadband sunlight absorption ability and high sintering resistance. Under illumination of focused sunlight, Ru/MoTiC can catalyze the reverse water-gas shift (RWGS) reaction to produce carbon monoxide from the greenhouse gas carbon dioxide and renewable hydrogen with enhanced activity, selectivity, and stability compared to their nanoparticle counterparts.

View Article and Find Full Text PDF

In recent years, more and more single-cell technologies have been developed. A vast amount of single-cell omics data has been generated by large projects, such as the Human Cell Atlas, the Mouse Cell Atlas, the Mouse RNA Atlas, the Mouse ATAC Atlas, and the Plant Cell Atlas. Based on these single-cell big data, thousands of bioinformatics algorithms for quality control, clustering, cell-type annotation, developmental inference, cell-cell transition, cell-cell interaction, and spatial analysis are developed.

View Article and Find Full Text PDF

With the increasing frequency of human exposure to blue light, the harmfulness of blue light has received wider attention. The damaging effect of blue light is complex and long-lasting. In this study, Drosophila melanogaster was used as a model organism to investigate the protective effect of the senolytic drug quercetin on blue light toxicity.

View Article and Find Full Text PDF

Treating hazardous waste Ni from the electroplating industry is mandated world-wide, is exceptionally expensive, and carries a very high CO footprint. Rather than regarding Ni as a disposable waste, the chemicals and petrochemicals industries could instead consider it a huge resource. In the work described herein, we present a strategy for upcycling waste Ni from electroplating wastewater into a photothermal catalyst for converting CO to CO.

View Article and Find Full Text PDF

Aims: Viral integration profiles attract increased interest in the study of HBV-related hepatocellular carcinoma (HCC), but their features in the early stage of infection and changes due to antiviral treatments remain largely unknown.

Methods: Liver biopsies and paired blood samples were obtained from HBeAg-positive patients before and after 48 weeks of entecavir treatment, and a probe-based capture strategy was applied for analyzing the HBV integrations in these samples. Serum HBV markers, including viral DNA, pgRNA, and HBsAg, were longitudinally assessed.

View Article and Find Full Text PDF

As the best adapted high altitude population, Tibetans feature a relatively high offspring survival rate. Genome-wide studies have identified hundreds of candidate SNPs related to high altitude adaptation of Tibetans, although most of them have unknown functional relevance. To explore the mechanisms behind successful reproduction at high altitudes, we compared the placental transcriptomes of Tibetans, sea level Hans (SLHan), and Han immigrants (ImHan).

View Article and Find Full Text PDF

In recent years, as an emerging pollutant, microplastic (MPs) pollution is gradually becoming a research hotspot. MPs are ubiquitous in the entire ecological environment. Organisms can be exposed to MPs via inhalation or ingestion.

View Article and Find Full Text PDF

Cu-based catalysts exhibit excellent performance in hydrogenation reactions. However, the poor stability of Cu catalysts under high temperatures has restricted their practical applications. The preparation of stable Cu catalysts supported by SiO with strong metal-support interaction (SMSI) has thus aroused great interest due to the high abundance, low toxicity, feasible processability, and low cost of SiO .

View Article and Find Full Text PDF

All-wet metal-assisted chemical etching (MACE) is a simple and low-cost method to fabricate one-dimensional Si nanostructures. However, it remains a challenge to fabricate Si nanocones (SiNCs) with this method. Here, we achieved wafer-scale fabrication of SiNC arrays through an all-wet MACE process.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session9h8ue3c7gjms81b5n3ilhi5r5et8uvfv): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once