Publications by authors named "Dajun Xing"

Sensitivity to motion direction is a feature of visual neurons that is essential for motion perception. Recent studies have suggested that direction selectivity is re-established at multiple stages throughout the visual hierarchy, which contradicts the traditional assumption that direction selectivity in later stages largely derives from that in earlier stages. By recording laminar responses in areas 17 and 18 of anesthetized cats of both sexes, we aimed to understand how direction selectivity is processed and relayed across 2 successive stages: the input layers and the output layers within the early visual cortices.

View Article and Find Full Text PDF

The human ability to perceive vivid memories as if they "float" before our eyes, even in the absence of actual visual stimuli, captivates the imagination. To determine the neural substrates underlying visual memories, we investigated the neuronal representation of working memory content in the primary visual cortex of monkeys. Our study revealed that neurons exhibit unique responses to different memory contents, using firing patterns distinct from those observed during the perception of external visual stimuli.

View Article and Find Full Text PDF

The neocortex comprises six cortical layers that play a crucial role in information processing; however, it remains unclear whether laminar processing is consistent across all regions within a single cortex. In this study, we demonstrate diverse laminar response patterns in the primary visual cortex (V1) of three male macaque monkeys when exposed to visual stimuli at different spatial frequencies (SFs). These response patterns can be categorized into two groups.

View Article and Find Full Text PDF

Surround suppression was initially identified as a phenomenon at the neural level in which stimuli outside the neuron's receptive field alone cannot activate responses but can modulate neural responses to stimuli covered inside the receptive field. Subsequent studies showed that surround suppression is not only a critical property of neurons across species and brain areas but also has been found in visual perceptions. More importantly, surround suppression varies across individuals and shows significant differences between normal controls and patients with certain mental disorders.

View Article and Find Full Text PDF

Associative learning involves complex interactions of multiple cognitive factors. While adult subjects can articulate these factors verbally, for model animals such as macaques, we rely on behavioral outputs. In our study, we used pupillary responses as an alternative measure to capture these underlying cognitive changes.

View Article and Find Full Text PDF

The coding privilege of end-spectral hues (red and blue) in the early visual cortex has been reported in primates. However, the origin of such bias remains unclear. Here, we provide a complete picture of the end-spectral bias in visual system by measuring fMRI signals and spiking activities in macaques.

View Article and Find Full Text PDF

Black and white information is asymmetrically distributed in natural scenes, evokes asymmetric neuronal responses, and causes asymmetric perceptions. Recognizing the universality and essentiality of black-white asymmetry in visual information processing, the neural substrates for black-white asymmetry remain unclear. To disentangle the role of the feedforward and recurrent mechanisms in the generation of cortical black-white asymmetry, we recorded the V1 laminar responses and LGN responses of anesthetized cats of both sexes.

View Article and Find Full Text PDF

Genetically encoded calcium indicators (GECIs) are indispensable tools for real-time monitoring of intracellular calcium signals and cellular activities in living organisms. Current GECIs face the challenge of suboptimal peak signal-to-baseline ratio (SBR) with limited resolution for reporting subtle calcium transients. We report herein the development of a suite of calcium sensors, designated NEMO, with fast kinetics and wide dynamic ranges (>100-fold).

View Article and Find Full Text PDF

Microsaccades play a critical role in refreshing visual information and have been shown to have direction-specific influences on human perception. However, the neural mechanisms underlying such direction-specific effects remains unknown. Here, we report the emergence of direction-specific microsaccade modulation in the middle layer of V2 but not in V1: responses of V2 neurons after microsaccades moved toward their receptive fields were stronger than those when microsaccades moved away.

View Article and Find Full Text PDF

Alpha rhythms in the human electroencephalogram (EEG), oscillating at 8-13 Hz, are located in parieto-occipital cortex and are strongest when awake people close their eyes. It has been suggested that alpha rhythms were related to attention-related functions and mental disorders (e.g.

View Article and Find Full Text PDF

Background: Accurately positioning totally implantable venous access device (TIVAD) catheters and reducing complications in pediatric patients are important and challenging. A number of studies have shown methods for locating the tip of the TIVAD catheter. We assessed the success and complications of TIVAD implantation guided by transesophageal echocardiography (TEE) via the internal jugular vein (IJV) for 294 patients in this retrospective study.

View Article and Find Full Text PDF

Spatial integration of visual information is an important function in the brain. However, neural computation for spatial integration in the visual cortex remains unclear. In this study, we recorded laminar responses in V1 of awake monkeys driven by visual stimuli with grating patches and annuli of different sizes.

View Article and Find Full Text PDF

Gamma-band activity, peaking around 30-100 Hz in the local field potential's power spectrum, has been found and intensively studied in many brain regions. Although gamma is thought to play a critical role in processing neural information in the brain, its cognitive functions and neural mechanisms remain unclear or debatable. Experimental studies showed that gamma rhythms are stochastic in time and vary with visual stimuli.

View Article and Find Full Text PDF

Both surface luminance and edge contrast of an object are essential features for object identification. However, cortical processing of surface luminance remains unclear. In this study, we aim to understand how the primary visual cortex (V1) processes surface luminance information across its different layers.

View Article and Find Full Text PDF
Article Synopsis
  • The study identifies three distinct gamma rhythms in the primary visual cortex (V1) that process spatial frequency signals, revealing their unique neural origins.* -
  • Low gamma rhythms (LG; 25-40 Hz) originate in superficial layers of V1 and prefer higher spatial frequencies, while medium (MG; 40-65 Hz) and high gamma rhythms (HG; 65-85 Hz) come from precortical areas and focus on lower frequencies.* -
  • These gamma rhythms outperform spike activity in distinguishing between edges and surfaces of objects, indicating their importance in how the visual system processes different spatial frequencies and synchronizes object features.*
View Article and Find Full Text PDF

Finding out the physical structure of neuronal circuits that governs neuronal responses is an important goal for brain research. With fast advances for large-scale recording techniques, identification of a neuronal circuit with multiple neurons and stages or layers becomes possible and highly demanding. Although methods for mapping the connection structure of circuits have been greatly developed in recent years, they are mostly limited to simple scenarios of a few neurons in a pairwise fashion; and dissecting dynamical circuits, particularly mapping out a complete functional circuit that converges to a single neuron, is still a challenging question.

View Article and Find Full Text PDF

Stimulus-dependence of gamma oscillations (GAMMA, 30-90 Hz) has not been fully understood, but it is important for revealing neural mechanisms and functions of GAMMA. Here, we recorded spiking activity (MUA) and the local field potential (LFP), driven by a variety of plaids (generated by two superimposed gratings orthogonal to each other and with different contrast combinations), in the primary visual cortex of anesthetized cats. We found two distinct narrow-band GAMMAs in the LFPs and a variety of response patterns to plaids.

View Article and Find Full Text PDF

Gamma oscillation (GAMMA) in the local field potential (LFP) is a synchronized activity commonly found in many brain regions, and it has been thought as a functional signature of network connectivity in the brain, which plays important roles in information processing. Studies have shown that the response property of GAMMA is related to neural interaction through local recurrent connections (RC), feed-forward (FF), and feedback (FB) connections. However, the relationship between GAMMA and long-range horizontal connections (HC) in the brain remains unclear.

View Article and Find Full Text PDF

Cortical inhibition plays an important role in information processing in the brain. However, the mechanisms by which inhibition and excitation are coordinated to generate functions in the six layers of the cortex remain unclear. Here, we measured laminar-specific responses to stimulus orientations in primary visual cortex (V1) of awake monkeys (male, ).

View Article and Find Full Text PDF

Layer 6 appears to perform a very important role in the function of macaque primary visual cortex, V1, but not enough is understood about the functional characteristics of neurons in the layer 6 population. It is unclear to what extent the population is homogeneous with respect to their visual properties or if one can identify distinct subpopulations. Here we performed a cluster analysis based on measurements of the responses of single neurons in layer 6 of primary visual cortex in male macaque monkeys () to achromatic grating stimuli that varied in orientation, direction of motion, spatial and temporal frequency, and contrast.

View Article and Find Full Text PDF

The interaction between brightness and color causes there to be different color appearance when one and the same object is viewed against surroundings of different brightness. Brightness contrast causes color to be desaturated, as has been found in perceptual experiments on color induction and color-gamut expansion in human vision. However, it is not clear yet where in the cerebral cortex the brightness-color interaction that causes these major perceptual effects is located.

View Article and Find Full Text PDF

Darkness and brightness are very different perceptually. To understand the neural basis for the visual difference, we studied the dynamical states of populations of neurons in macaque primary visual cortex when a spatially uniform area (8° × 8°) of the visual field alternated between black and white. Darkness evoked sustained nerve-impulse spiking in primary visual cortex neurons, but bright stimuli evoked only a transient response.

View Article and Find Full Text PDF

Neuronal responses to prolonged stimulation attenuate over time. Here, we ask a fundamental question: is adaptation a simple process for the neural system during which sustained input is ignored, or is it actually part of a strategy for the neural system to adjust its encoding properties dynamically? After simultaneously recording the activities of a group of bullfrog's retinal ganglion cells (dimming detectors) in response to sustained dimming stimulation, we applied a combination of information analysis approaches to explore the time-dependent nature of information encoding during the adaptation. We found that at the early stage of the adaptation, the stimulus information was mainly encoded in firing rates, whereas at the late stage of the adaptation, it was more encoded in neural correlations.

View Article and Find Full Text PDF

Neurons in primary visual cortex, V1, very often have extraclassical receptive fields (eCRFs). The eCRF is defined as the region of visual space where stimuli cannot elicit a spiking response but can modulate the response of a stimulus in the classical receptive field (CRF). We investigated the dependence of the eCRF on stimulus contrast and orientation in macaque V1 cells for which the laminar location was determined.

View Article and Find Full Text PDF

Neural activity in the gamma frequency range ("gamma") is elevated during active cognitive states. Gamma has been proposed to play an important role in cortical function, although this is debated. Understanding what function gamma might fulfill requires a better understanding of its properties and the mechanisms that generate it.

View Article and Find Full Text PDF