Publications by authors named "Dajie Yang"

Understanding the interaction between light and chiral nanostructures is of fundamental importance, yet the principles governing chiral interactions have remained largely phenomenological. In this work, we present a chiral field-mode (FM) matching model to quantify the circular dichroism (CD) and helical dichroism (HD) of chiral plasmonic nanostructures interacting with beams of different spin-orbit states. The chiral FM matching model posits that among the inherent resonance modes within the nanostructure, the most efficiently excited mode is the one that matches the external field structure by possessing one more node along the vibration direction, with the field structure itself being determined by the interaction between the geometric phase and dynamic phase through a Doppler-like effect.

View Article and Find Full Text PDF

Orbital angular momentum (OAM) of light has the potential to induce high-order transitions of electrons in atoms by compensating for the OAM required. However, due to the dark spot situating at the focal center of the OAM beam, high-order transitions are typically weak. In this study, we demonstrate efficient and selective high-order resonances in symmetric and asymmetric plasmonic nanoparticles that are comparable in size to the waist radius of the OAM beam.

View Article and Find Full Text PDF

Catalytic ozonation is an effective and promising advanced oxidation technology for organic pollutant removal. Herein, CexMnO metal oxides loaded on AlO catalysts (Mn-Ce/AlO) were synthesized for catalytic ozonation of the wastewater containing ciprofloxacin. The morphology, crystal structure, and specific surface area of the prepared catalyst were characterized.

View Article and Find Full Text PDF

Surface plasmons usually take two forms: surface plasmon polaritons (SPP) and localized surface plasmons (LSP). Recent experiments demonstrate an interesting plasmon mode within plasmonic gaps, showing distinct characters from the two usual forms. In this investigation, by introducing a fundamental concept of SPP standing wave and an analytical model, we reveal the nature of the recently reported plasmon modes.

View Article and Find Full Text PDF

Unlabelled: Colloidal metal nanocrystals (NCs) show great potential in plasmon-enhanced spectroscopy owing to their attractive and structure-depended plasmonic properties. Herein, unique Au rod-cup NCs, where Au nanocups are embedded on the one or two ends of Au nanorods (NRs), are successfully prepared for the first time via a controllable wet-chemistry strategy. The Au rod-cup NCs possess multiple plasmon modes including transverse and longitudinal electric dipole (TED and LED), magnetic dipole (MD), and toroidal dipole (TD) modulated LED resonances, producing large extinction cross-section and huge near-field enhancements for plasmon-enhanced spectroscopy.

View Article and Find Full Text PDF

The orbital angular momentum (OAM) of light offers a new degree of freedom for light-matter interactions, yet how to control such interactions with this physical dimension remains open. Here, by developing a numerical method enabling optical OAM simulations, we provide insights into complex plasmon behaviors with the physical dimension of OAM, and we prove in theory that plasmonic nanostructures can function as efficient antennas to intercept and directionally reradiate the power of OAM beams. The interplay between optical OAM and spin angular momentum (SAM) generates novel particle polarizations and radiations, which were inaccessible before.

View Article and Find Full Text PDF

The cooperation of magnetic and electric plasmon resonances in cup-shaped metallic nanostructures exhibits significant capability for second-harmonic generation (SHG) enhancement. Herein, we report an approach for synthesizing Au open nanoshells with tunable numbers and sizes of openings on a template of six-pointed PbS nanostars. The morphology of Au nanoshells is controlled by adjusting the amount of HAuCl, and the characteristic shapes of pointed nanocaps, open nanoshells, and hollow nanostars are obtained.

View Article and Find Full Text PDF

The quantum behavior of surface plasmons has received extensive attention, benefiting from the development of exquisite nanotechnology and the diverse applications. Blueshift, redshift, and nonshift of localized surface plasmon resonances (LSPRs) have all been reported as the particle size decreases and enters the quantum size regime, but the underlying physical mechanism to induce these controversial size dependences is not clear. Herein, we propose an improved semiclassical model for modifying the dielectric function of metal nanospheres by combining the intrinsic quantized electron transitions and surface electron injection or extraction to investigate the plasmon shift and LSPR size dependence of the charged Au nanoparticles.

View Article and Find Full Text PDF

Utilizing the abundant and renewable solar energy to address the global energy shortage and water scarcity is promising. Great effort has been devoted to photothermal conversion for its typically full-spectrum utilization and high efficiency. Here, the coral-like micro/nanostructure was fabricated on an aluminum sheet by a facile laser direct writing technology.

View Article and Find Full Text PDF

Au nanoingots, on which an Au nanosphere is accurately placed in an open Au shell, are synthesized through a controllable hydrothermal method. The prepared Au nanoingots exhibit an adjustable cavity structure, strong plasmon coupling, tunable magnetic plasmon resonance, and prominent photocatalytic and SERS performances. Au nanoingots exhibit two resonance peaks in the extinction spectrum, one (around 550 nm) is ascribed to electric dipole resonance coming from the central Au, and the other one (650-800 nm) is ascribed to the magnetic dipole resonance originating from the open Au shell.

View Article and Find Full Text PDF

Plasmon coupling induced intense light absorption and near-field enhancement have vast potential for high-efficiency photocatalytic applications. Herein, (Au/AgAu)@CdS core-shell hybrids with strong multi-interfacial plasmon coupling were prepared through a convenient strategy for efficient photocatalytic hydrogen generation. Bimetallic Au/AgAu cores with an adjustable number of nanogaps (from one to four) were primarily synthesized by well-controlled multi-cycle galvanic replacement and overgrowth processes.

View Article and Find Full Text PDF

Optical excitation, subsequent energy transfer, and emission are fundamental to many physical problems. Optical antennas are ideal candidates for manipulating these processes. We extend energy transfer to second- and third-harmonic (SH and TH) fields through the collaborative susceptibility χ ( = 1, 2, 3) resonances of nonlinear optical antennas.

View Article and Find Full Text PDF

Metallic nanocavities exhibit extremely high spectral sensitivity to geometrical variations and are promising for sensing applications. Here, the sensitivity of a cubic dimer cavity, to picometer gap variation, is analysed in a model, which takes into account the phase shift of scattering at the boundaries and the quantum tunnelling effect in the small gap limit. The resonance wavelengths are expressed in terms of the plasmon frequency, the medium dielectric function, and the geometry of the gap.

View Article and Find Full Text PDF
Article Synopsis
  • The study explores the synthesis of Au and AuAg nanocups with unique geometries that enhance their optical properties, specifically focusing on their magnetic plasmon resonances and second-harmonic generation (SHG) capabilities.
  • The optimal conditions for achieving maximum SHG and magnetic field enhancement are identified, showing that a normalized depth of about 0.78-0.79 for Au nanocups yields the best results by leveraging magnetic plasmon resonance combined with a "lightning-rod effect."
  • The research also demonstrates that AuAg heteronanocups can combine magnetic and electric plasmon resonances, achieving a 21.8-fold increase in SHG intensity, providing new insights for
View Article and Find Full Text PDF

Bimetallic nanoparticles are widely used in chemical catalysis and energy conversion. Their practical performance can be better exploited through morphological control by adjusting the synthetic strategy. Herein, an aqueous phase route is used to achieve the controlled preparation of bimetallic Au/Pt and hollow Au/Pt/Au nanotriangles with tunable plasmonic properties and superior photocatalytic activity.

View Article and Find Full Text PDF

We theoretically study the gain-assisted double plasmonic resonances to enhance second harmonic generation (SHG) in a centrosymmetric multilayered silver-dielectric-gold-dielectric (SDGD) nanostructure. Introducing gain media into the dielectric layers can not only compensate the dissipation and lead to giant amplification of surface plasmons (SPs), but also excite local quadrupolar plasmon which can boost SHG by mode matching. Specifically, as the quadrupolar mode dominates SHG in our nanostructure, under the mode matching condition, the intensity of second harmonic near-field can be enhanced by 4.

View Article and Find Full Text PDF

The "artificial magnetic" resonance in plasmonic metamolecules extends the potential application of magnetic resonance from terahertz to optical frequency bypassing the problem of magnetic response saturation by replacing the conduction current with the ring displacement current. So far, the magnetic Fano resonance-induced nonlinearity enhancement in plasmonic metamolecule rings has not been reported. Here, we use the magnetic Fano resonance to enhance second-harmonic generation (SHG) in plasmonic metamolecule rings.

View Article and Find Full Text PDF

We report a plasmon-assisted growth of metal and semiconductor onto the tips of Ag nanotriangles (AgNTs) under light irradiation. The site-selective growth of Ag onto AgNTs are firstly demonstrated on the copper grids and amine-coated glass slides. As the irradiation time increases, microscopic images indicate that AgNTs gradually touch with each other and finally "weld" tip-to-tip together into the branched chains.

View Article and Find Full Text PDF

The surface plasmon resonance (SPR) of metal nanoparticles exhibits quantum behaviors as the size decreases owing to the transitions of quantized conduction electrons, but most studies are limited to the monotonous SPR blue-shift caused by off-resonant transitions. Here, we demonstrate the nonmonotonous SPR red-shift caused by resonant electron transitions and photocatalytic activity enhanced by the quantum plasmon resonance of colloidal gold nanoparticles. A maximal SPR wavelength and the largest photocatalytic activity are observed in the quantum regime for the first time for the gold nanoparticles with a diameter of 3.

View Article and Find Full Text PDF

This paper describes a facile method for the synthesis of Au/AuAg/Ag2S/PbS core-multishell nanorods with double trapping layers. The synthesis, in sequence, involved deposition of Ag shells onto the surfaces of Au nanorod seeds, formation of AuAg shells by a galvanic replacement reaction, and overgrowth of the Ag2S shells and PbS shells. The resulting core-multishell nanorod possesses an air gap between the Au core and the AuAg shell.

View Article and Find Full Text PDF

We present that surface plasmon polariton, side-coupled to a gain-assisted nanoresonator where the absorption is overcompensated, exhibits a prominent phase shift up to π maintaining the flat unity transmission across the whole broad spectra. Bandwidth of this plasmonic phase shift can be controlled by adjusting the distance between the plasmonic waveguide and the nanoresonator. For a moderate distance, within bandwidth of 100 GHz, the phase shift and transmission are constantly maintained.

View Article and Find Full Text PDF

We investigate tunable plasmon resonance and enhanced second harmonic generation (SHG) and up-converted fluorescence (UCF) of the hemispheric-like silver core/shell islands. The Ag, Ag/Ag2O, and Ag/Ag2O/Ag island films are prepared by using a sputtering technique. The SHG and UCF of the Ag/Ag2O/Ag core/shell islands near the percolating regime is enhanced 2.

View Article and Find Full Text PDF
Article Synopsis
  • Strong coupling between plasmons and molecules leads to unique hybridized resonance characteristics, particularly visible in the study of Au nanorods (AuNRs) with the IR-806 dye.
  • The research identifies five distinct hybridized resonance peaks in the extinction spectra, including two previously unreported peaks around 840 and 912 nm.
  • The study reveals how these hybridized peaks are influenced by the original plasmon resonance wavelength of the AuNRs and the concentration of the IR-806 molecules, offering new insights for tuning the optical properties of liquid crystals.
View Article and Find Full Text PDF

A saturable absorber is a nonlinear functional material widely used in laser and photonic nanodevices. Metallic nanostructures have prominent saturable absorption (SA) at the plasmon resonance frequency owing to largely enhanced ground state absorption. However, the SA of plasmonic metal nanostructures is hampered by excited-state absorption processes at very high excitation power, which usually leads to a changeover from SA to reversed SA (SA→RSA).

View Article and Find Full Text PDF

Seeking plasmonic nanostructures with large field confinement and enhancement is significant for photonic and electronic nanodevices with high sensitivity, reproducibility, and tunability. Here, we report the synthesis of plasmonic arrays composed of two-segment dimer nanorods and coaxial cable nanorods with ∼1 nm gap insulated by a self-assembled Raman molecule monolayer. The gap-induced plasmon coupling generates an intense field in the gap region of the dimer junction and the cable interlayer.

View Article and Find Full Text PDF