Substituted benzo[i]phenanthridines that have incorporated within their structure an 8,9-methylenedioxy group can exhibit topoisomerase I-targeting activity. Structure-activity studies were performed to examine the influence of saturation at the 11,12-positions of several substituted 8,9-methylenedioxybenzo[i]phenanthridines. The activities of these dihydro analogues were compared to those of their unsaturated analogues.
View Article and Find Full Text PDFSeveral benzo[c]phenanthridine and protoberberine alkaloids, such as nitidine and berberrubine, are known to induce DNA cleavage in the presence of either topoisomerase I or II. Structure-activity studies performed on various analogues related to benzo[c]phenanthridine and protoberberine alkaloids have provided insights into structural features that influence this topoisomerase-targeting activity. Modifications within the A-ring of benzo[c]phenanthridine and protoberberine alkaloids can significantly alter their ability to enhance the cleavable complex formation that occurs between DNA and topoisomerases.
View Article and Find Full Text PDFAppropriately substituted benzo[i]phenanthridines structurally related to nitidine, a benzo[c]phenanthridine alkaloid with antitumor activity, are active as topoisomerase I-targeting agents. Studies on benzo[i]phenanthridines have indicated analogues that possess a 2,3-methylenedioxy moiety and at least one and preferably two methoxyl groups at the 8- and 9-positions, such as 8,9-dimethoxy-2,3-methylenedioxybenzo[i]phenanthridine, 2, are active as topoisomerase I-targeting agents. Tetramethoxylated benzo[i]phenanthridines, wherein the 2,3-methylenedioxy moiety is replaced with methoxyl groups at the 2- and 3-position, are inactive as a topoisomerase I-targeting agent.
View Article and Find Full Text PDF