Precise engineering of excited-state interactions between an organic conjugated molecule and a two-dimensional semiconducting inorganic nanosheet, specifically the manipulation of charge-transfer excited (CTE) states, still remains a challenge for state-of-the-art photochemistry. Herein, we report a long-lived, highly emissive CTE state at structurally well-defined hetero-nanostructure interfaces of photoactive pyrene and two-dimensional MoS nanosheets an -benzylsuccinimide bridge (Py-Bn-MoS). Spectroscopic measurements reveal that no charge-transfer state is formed in the ground state, but the locally-excited (LE) state of pyrene in Py-Bn-MoS efficiently generates an unusual emissive CTE state.
View Article and Find Full Text PDFChem Commun (Camb)
August 2023
Graphene oxide (GO) with its unique two-dimensional structure offers an emerging platform for designing advanced gas separation membranes that allow for highly selective transport of hydrogen molecules. Nevertheless, further tuning of the interlayer spacing of GO laminates and its effect on membrane separation efficiency remains to be explored. Here, positively charged fullerene C derivatives are electrostatically bonded to the surface of GO sheets in order to manipulate the interlayer spacing between GO nanolaminates.
View Article and Find Full Text PDF