Publications by authors named "Daizo Yamaguchi"

A highly efficient reactor with a stirring device was specially designed with the intent of performing the hydrolysis of pure crystalline cellulose using a carbon-based solid acid catalyst. This catalyst comprised an amorphous carbon-based material bearing -SOH, -COOH and -OH groups. The stirring apparatus had seven blades coated with polytetrafluoroethylene and arranged axially at regular intervals with a 60° offset.

View Article and Find Full Text PDF

The powder properties of a carbon-based solid acid catalyst, an amorphous carbon material bearing SOH, COOH and OH groups, were investigated for the hydrolysis of cellulose. The Carr flowability and floodability indices, the angle of internal friction (adherence), and the particle size distribution and shape for the powder catalyst were determined. The need to develop a special reactor with a stirring apparatus for the hydrolysis of cellulose was determined based on the Carr flowability index.

View Article and Find Full Text PDF

Carbon-based solid acid catalysts have shown significant potential in a wide range of applications, and they have been successfully synthesized using simple processes. Magnetically separable mesoporous carbon composites also have enormous potential, especially in separation and adsorption technology. However, existing techniques have been unable to produce a magnetically separable mesoporous solid acid catalyst because no suitable precursors have been identified.

View Article and Find Full Text PDF

Here we present the first report of a carbon-γ-Fe₂O₃ nanoparticle composite of mesoporous carbon, bearing COOH- and phenolic OH- functional groups on its surface, a remarkable and magnetically separable adsorbent, for the radioactive material emitted by the Fukushima Daiichi nuclear power plant accident. Contaminated water and soil at a level of 1,739 Bq kg(-1) ((134)Cs and (137)Cs at 509 Bq kg(-1) and 1,230 Bq kg(-1), respectively) and 114,000 Bq kg(-1) ((134)Cs and (137)Cs at 38,700 Bq kg(-1) and 75,300 Bq kg(-1), respectively) were decontaminated by 99% and 90% respectively with just one treatment carried out in Nihonmatsu city in Fukushima. Since this material is remarkably high performance, magnetically separable, and a readily applicable technology, it would reduce the environmental impact of the Fukushima accident if it were used.

View Article and Find Full Text PDF

The reaction mechanism of the hydrolysis of cellulose by a carbon-based solid acid, amorphous carbon containing graphene sheets bearing SO(3)H, COOH, and phenolic OH groups, has been investigated in detail through the hydrolysis of water-soluble beta-1,4-glucan. Whereas a range of solid strong Brønsted acid catalysts (inorganic oxides with acidic OH groups, SO(3)H-bearing resins, and the carbon-based solid acid) can hydrolyze the beta-1,4-glycosidic bonds in cellobiose (the shortest water-soluble beta-1,4-glucan), the tested solid acids except for the carbon material, consisting of conventional solid acids, cannot function as effective catalysts for the hydrolysis of cellohexaose (a long-chain water-soluble beta-1,4-glucan). However, the carbon material exhibits remarkable catalytic performance for the hydrolysis of cellohexaose: the turnover frequency (TOF) of SO(3)H groups in the carbon material exceeds ca.

View Article and Find Full Text PDF

The hydrolysis of cellulose into saccharides using a range of solid catalysts is investigated for potential application in the environmentally benign saccharification of cellulose. Crystalline pure cellulose is not hydrolyzed by conventional strong solid Brønsted acid catalysts such as niobic acid, H-mordenite, Nafion and Amberlyst-15, whereas amorphous carbon bearing SO 3H, COOH, and OH function as an efficient catalyst for the reaction. The apparent activation energy for the hydrolysis of cellulose into glucose using the carbon catalyst is estimated to be 110 kJ mol (-1), smaller than that for sulfuric acid under optimal conditions (170 kJ mol (-1)).

View Article and Find Full Text PDF