Synthetic assembly of sugar moieties and amino acids in order to create "sugar-amino acid hybrid polymers" was accomplished by means of simple radical polymerization of carbohydrate monomers having an amino acid-modified polymerizable aglycon. Amines derived from globotriaoside and lactoside as glycoepitopes were condensed with known carbobenzyloxy derivatives, including Z-Gly, Z-l-Ala and Z-β-Ala, which had appropriate spacer ability and a chiral center to afford fully protected sugar-amino acid hybrid compounds in good yields. After deprotection followed by acryloylation, the water-soluble glycomonomers were polymerized with or without acrylamide in the presence of a radical initiator in water to give corresponding copolymers and homopolymers, which were shown by SEC analysis to have high molecular weights.
View Article and Find Full Text PDFGlycodendrimers fascinate both carbohydrate chemists and biologists because of their ability to recognize lectins and enhance carbohydrate-protein interactions. These characteristics make glycodendrimers a valuable tool in glycoscience and chemical biology. Many glycodendrimers have been described to date; this tutorial review focuses specifically on carbosilane glycodendrimers.
View Article and Find Full Text PDFA carbosilane dendrimer (4a) and its silacyclopentadiene analog (4b), both functionalized with lactoses, were tested for their abilities to act as drug-delivery systems. The critical micelle concentrations of 4a and 4b were measured using the drop-volume method in water and were 1.7 and 2.
View Article and Find Full Text PDFAn efficient synthesis of sialyllactosamine (SiaLacNAc) clusters using carbosilanes as core scaffolds has been accomplished by means of chemical and enzymatic approaches. N-Acetyl-D-glucosamine (GlcNAc) clusters having O-glycosidic linkage or S-glycosidic linkage were chemically synthesized from known intermediates in high yields. The GlcNAc clusters were first used as substrates for beta1,4 galactosyl transferase using UDP-galactose (UDP-Gal) as a sugar source to provide corresponding N-acetyllactosamine clusters.
View Article and Find Full Text PDFSynthesis of bi-fluorescence-labeled maltooligosaccharides for amylase assay was accomplished. Preliminary biological evaluation of both bi-fluorescence-labeled maltohexasaccharide and maltose using alpha-amylase was carried out, and the hexaosyl derivative showed unique variation on the basis of fluorescence resonance energy transfer (FRET).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2009
A hallmark of acute relapsing fever borreliosis is severe bacteremia. Some Borrelia species, such as B. duttonii and B.
View Article and Find Full Text PDFGlycomonomers of sialic acid in which the acetamide group at C-5 was converted into two kinds of C=C double bond substituents were prepared and the fully protected glycomonomers were directly polymerized before deprotection steps. Radical polymerization with acrylamide in DMF in the presence of ammonium persulfate and N,N,N',N'-tetramethylethylenediamine proceeded smoothly and gave corresponding sialopolymers. Interestingly glycomonomers had hemagglutination inhibitory activities not only for H1N1 but also for H3N2 of human influenza virus strains.
View Article and Find Full Text PDFIn order to develop novel influenza sialidase inhibitors, we constructed a library of glycoclusters composed of twelve types of sialylated dendrimers with thioglycosidic linkage that are resistant to hydrolysis by the sialidases. These sialodendrimers were synthesized by condensation reaction between a thiosialoside modified on the aglycon terminal end by a thioacetyl group and twelve types of carbosilane dendrimers having brominated terminal ends under deacetylation conditions, and temporal re-protection was performed for purification. Removal of all protection of the glycodendrimers was accomplished by transesterification and subsequent saponification to provide corresponding water-soluble glycodendrimers in good yields.
View Article and Find Full Text PDFA series of carbosilane dendrimers uniformly functionalized with sialyl lactose moieties (Neu5Ac alpha2-->3Gal beta1-->4Glc) was systematically synthesized, and biological evaluations for anti-influenza virus activity using the glycodendrimers were performed. The results suggested that the glycodendrimers had unique biological activities depending on the form of their core frame, and Dumbbell(1)6-amide type glycodendrimer 7 showed particularly strong inhibitory activities against human influenza viruses [A/PR/8/34 (H1N1) and A/Aichi/2/68 (H3N2)]. The results suggested that the structure-activity relationship (SAR) on the glycolibrary against various influenza viruses was observed, and dumbbell-shaped dendrimers as supporting carbohydrate moieties were found to be the most suitable core scaffolds in this study.
View Article and Find Full Text PDFPreparation of photo-responsive carbosilane dendrimers bearing 4-phenylazo-benzonitrile units on their molecular surface has been accomplished, and their both photo and thermal behaviors have also been characterized. These functional dendrimers suggest that the apparent molecular sizes of the cis-isomers are smaller than those of the corresponding trans-isomers, since the molecular diameter of these dendrimers would be shorter on the basis of trans-->cis photo-isomerization of azobenzene.
View Article and Find Full Text PDFAn efficient synthesis of a series of carbosilane dendrimers uniformly functionalized with sialyl alpha(2-->3) lactose (Neu5Acalpha(2-->3)Galbeta(1-->4)Glcbeta1-->) moieties was accomplished. The results of a preliminary study on biological responses against influenza virus hemagglutinin, using the sialyl lactose clusters showed unique biological activities on the basis of the structure-activity relationship according to the carbosilane scaffolds.
View Article and Find Full Text PDFAn efficient separation between fully acetylated thiosialoside methyl esters and fully acetylated Neu5Ac2en methyl esters was accomplished by means of a size-exclusion chromatography (SEC) method. Purity determinations and structural elucidation of the isolated compounds were performed by a combination of elemental analyses and spectroscopic analyses, including IR, (1)H, and (13)C NMR, and mass spectroscopic analyses.
View Article and Find Full Text PDFA conventional synthesis of alpha-thioglycoside of sialic acid as a glycomonomer was accomplished. Radical copolymerization of the glycomonomer with vinyl acetate proceeded smoothly to afford a new class of glycopolymers having thiosialoside residues, in which all protection was removed by a combination of transesterification and saponification to provide a water-soluble thiosialoside cluster. The results of a preliminary study on biological responses against influenza virus neuraminidases using the thiosialoside polymer as a candidate for a neuraminidase inhibitor showed that the glycopolymer has potent inhibitory activity against the neuraminidases.
View Article and Find Full Text PDFCarbosilane dendrimers periphery-functionalized with lactotriaose (GlcNAcbeta1-3Galbeta1-4Glc) with valencies of three, four, six, and twelve were prepared for use in a lectin-binding assay. A lactotriaose derivative was prepared from D-glucosamine and D-lactose derivatives. The N-Troc-protected glucosamine glycosyl donor and 3'-O-unprotected lactose glycosyl acceptor were condensed in the presence of silver trifluoromethanesulfonate and methylsulfenyl bromide to provide corresponding trisaccharide with new beta-1-3 linkages in 92% yield.
View Article and Find Full Text PDFAn efficient synthesis of a series of carbosilane dendrimers uniformly functionalized with alpha-thioglycoside of sialic acid was accomplished. The results of a preliminary study on biological responses against influenza virus sialidases using thiosialoside clusters showed that some of the glycodendrimers have inhibitory potencies against the sialidases.
View Article and Find Full Text PDFTo enhance biological activities on the basis of the sugar cluster effect, a series of carbosilane dendrimers as core scaffolds for the construction of glycodendrimers was systematically synthesized from appropriate chlorosilanes by a combination of alkenylation and hydrosylation reactions. Those carbosilane dendrimers having terminal C=C double bonds underwent general hydroboration reactions to give corresponding primary polyols. Further transformations of the alcohols were then performed by mesylation followed by a displacement with NaBr to provide corresponding dendrimers with 4 to 36 bromine atoms at each terminal end.
View Article and Find Full Text PDFAs an application of a one-pot reaction involving Birch reduction and subsequent S(N)2 reaction in liquid ammonia, synthetic assembly of trisaccharidic moieties of globotriaosyl ceramide onto carbosilane dendrimers was accomplished using tris(3-bromopropyl)phenylsilane and tris[tris(3-bromopropyl)silylpropyl]phenylsilane as the core scaffolds. The common globotriaosyl derivative having benzylsulfide functionality at the terminal of the aglycon was efficiently prepared from d-galactose and d-lactose as starting materials. The glycosyl donor derived from galactose and the glycosyl acceptor derived from lactose were condensed in the presence of silver triflate as the best promoter to provide corresponding trisaccharide with newly formed alpha-1-4 linkages in 90% yield.
View Article and Find Full Text PDFThe interaction between cell surface receptors and the envelope glycoprotein (EGP) on the viral membrane surface is the initial step of Dengue virus infection. To understand the host range, tissue tropism, and virulence of this pathogen, it is critical to elucidate the molecular mechanisms of the interaction of EGP with receptor molecules. Here, using a TLC/virus-binding assay, we isolated and characterized a carbohydrate molecule on mammalian cell surfaces that is recognized by dengue virus type 2 (DEN2).
View Article and Find Full Text PDFWe previously developed linear polymers bearing clustered trisaccharides of globotriaosylceramide (Gb3) as orally applicable Shiga toxin (Stx) neutralizers. Here, using a Gb3 polymer with a short spacer tethering the trisaccharide to the core, we found that shortening the spacer length markedly reduced the binding affinity for Stx2 but not Stx1. Moreover, mutational analysis revealed that the essential binding sites of the terminal trisaccharides were completely different between Stx1 and Stx2.
View Article and Find Full Text PDF4-Pentenyl (2,3,4,6-tetra-O-acetyl-beta-d-galactopyranosyl)-(1-->4)-(3,6-di-O-acetyl-2-deoxy-2-phthalimido-beta-d-glucopyranosyl)-(1-->3)-(2,6-di-O-benzoyl-beta-d-galactopyranosyl)-(1-->4)-2,3,6-tri-O-benzoyl-beta-d-glucopyranoside (4) was synthesized by regioselective glycosylation of 4-pentenyl (2,6,-di-O-benzoyl-beta-d-galactopyranosyl)-(1-->4)-2,3,6-tri-O-benzoyl-beta-d-glucopyranoside and (2,3,4,6-tetra-O-acetyl-beta-d-galactopyranosyl)-(1-->4)-3,6-di-O-acetyl-2-deoxy-2-phthalimido-beta-d-glucopyranosyl chloride. By conversion of the protecting groups followed by thioacetylation, 4 was transformed into the corresponding lacto-N-neotetraose derivative, 5-(acetylthio)pentenyl (2,3,4,6-tetra-O-acetyl-beta-d-galactopyranosyl)-(1-->4)-O-(3,6-di-O-acetyl-2-acetamido-2-deoxy-beta-d-glucopyranosyl)-(1-->3)-(2,4,6-di-O-acetyl-beta-d-galactopyranosyl)-(1-->4)-2,3,6-tri-O-acetyl-beta-d-glucopyranoside (6). The lacto-N-neotetraose derivative 6 was introduced into carbosilane dendrimer cores of three shapes, and three kinds of new carbosilane dendrimers peripherally functionalized by lacto-N-neotetraose were obtained.
View Article and Find Full Text PDFShiga toxin (Stx) is a major virulence factor of Stx-producing Escherichia coli. Recently, we developed a therapeutic Stx neutralizer with 6 trisaccharides of globotriaosyl ceramide, a receptor for Stx, in its dendrimer structure (referred to as "SUPER TWIG [1]6") to function in the circulation. Here, we determined the optimal structure of SUPER TWIG for it to function in the circulation and identified a SUPER TWIG with 18 trisaccharides, SUPER TWIG (2)18, as another potent Stx neutralizer.
View Article and Find Full Text PDFShiga toxin (Stx) is a major virulence factor in infection with Stx-producing Escherichia coli (STEC). We developed a series of linear polymers of acrylamide, each with a different density of trisaccharide of globotriaosylceramide (Gb3), which is a receptor for Stx, and identified Gb3 polymers with highly clustered trisaccharides as Stx adsorbents functioning in the gut. The Gb3 polymers specifically bound to both Stx1 and Stx2 with high affinity and markedly inhibited the cytotoxic activities of these toxins.
View Article and Find Full Text PDFInfection with Shiga toxin (Stx)-producing Escherichia coli O157:H7, which causes diarrhea and hemorrhagic colitis in humans, often results in fatal systemic complications, such as neurological damage and hemolytic-uremic syndrome. Because Stx circulating in the blood is a major causative factor of these complications, the development of a Stx neutralizer that functions in the circulation holds promise as a viable therapy. Here we developed a series of carbosilane dendrimers, in which trisaccharides of globotriaosyl ceramide, a receptor for Stx, were variously oriented at their termini (referred to as SUPER TWIG), and identified a SUPER TWIG with six trisaccharides as a Stx neutralizer functioning in the circulation.
View Article and Find Full Text PDF