The decomposition and oxidation of fat is essential for the formation and quality of the unique flavor of sausage. To explore the effect of lactic acid bacteria on fat decomposition and oxidation in fermented sausage, free fatty acids and volatile flavor compounds were determined by gas chromatography (GC) and headspace solid-phase microextraction (HS-SPME)-GC-MS, respectively. The results showed that the addition of IMAUJBH1 inhibited fat peroxidation and relatively increased the proportion of monounsaturated fatty acids.
View Article and Find Full Text PDFProtein, which is the main component of meat, is degraded and oxidized during meat fermentation. During fermentation, macromolecular proteins are degraded into small peptides and free amino acids, and oxidation leads to amino acid side chain modification, molecular crosslinking polymerization, and peptide chain cleavage. At different metabolic levels, these reactions may affect the protein structure and the color, tenderness, flavor, and edible value of fermented meat products.
View Article and Find Full Text PDFThis paper reviews the effects of domestic and foreign influences on the substance metabolism pathways and the flavor and flora of LAB in fermented meat products to provide a new theoretical basis for developing new products for the industrial application of lactic acid bacteria (LAB) in fermented meat products. LAB are extensively used among commonly fermented ingredients, such as fermented meat products and yogurt. As fermenting agents, LAB metabolize proteins, lipids, and glycogen in meat products through their enzyme system, which affects the tricarboxylic acid cycle, fatty acid metabolism, amino acid decomposition, and other metabolic processes, and decompose biological macromolecules into small molecules, adding a special flavor with a certain functionality to the final product.
View Article and Find Full Text PDF