Publications by authors named "Daixing Zhou"

Background: Neuroinflammation assumes a pivotal role in both the etiological underpinnings and the dynamic progression of sepsis-associated encephalopathy (SAE). The occurrence of cognitive deficits with SAE is associated with neuroinflammation. 4-phenyl butyrate (4-PBA) may control inflammation by inhibiting endoplasmic reticulum stress (ERS).

View Article and Find Full Text PDF

Background: Lipopolysaccharide, a highly potent endotoxin responsible for severe sepsis, is the major constituent of the outer membrane of gram-negative bacteria. Endothelial cells participate in both innate and adaptive immune responses as the first cell types to detect lipopolysaccharide or other foreign debris in the bloodstream. Endothelial cells are able to recognize the presence of LPS and recruit specific adaptor proteins to the membrane domains of TLR4, thereby initiating an intracellular signaling cascade.

View Article and Find Full Text PDF

Introduction: The ubiquitin system is an evolutionarily conserved and universal means of protein modification that regulates many essential cellular processes. Endothelial dysfunction plays a critical role in the pathophysiology of sepsis and organ failure. However, the mechanisms underlying the ubiquitination-mediated regulation on endothelial dysfunction are not fully understood.

View Article and Find Full Text PDF

TanshinoneⅡA (TanⅡA) is a noteworthy lipophilic diterpene compound derived from the dried roots of the Traditional Chinese Medicine Danshen () that has various pharmacological properties, including anti-inflammatory, antibacterial, and antioxidative effects. Sepsis is a life-threatening organ dysfunction induced by a dysregulated host response to infection. Recently, increasing attention has been paid to sepsis-induced dysfunction of the intestine, car-diovascular system, lungs, kidneys, liver, and other organs.

View Article and Find Full Text PDF

Sepsis is a life-threatening organ dysfunction caused by an abnormal infection-induced immune response. Despite significant advances in supportive care, sepsis remains a considerable therapeutic challenge and is the leading cause of death in the intensive care unit (ICU). Sepsis is characterized by initial hyper-inflammation and late immunosuppression.

View Article and Find Full Text PDF

It has been reported that angiopoietin 2 (Ang-2) plays an integral role in the pathophysiology of sepsis and many other inflammatory diseases. However, the specific role of Ang-2 in septic shock has not been defined. The aim of the present study was to assess the predictive value of serum Ang-2 in patients with septic shock.

View Article and Find Full Text PDF

Respiratory viruses can directly or indirectly damage the pulmonary defense barrier, potentially contributing to acute respiratory distress syndrome (ARDS). Despite developments in the understanding of the pathogenesis of ARDS, the underlying pathophysiology still needs to be elucidated. The PubMed database was reviewed for relevant papers published up to 2021.

View Article and Find Full Text PDF

Background: Coronavirus disease 2019 (COVID-19) is still a pandemic, with a high mortality rate in severe/critical cases. Therapies based on the Shenghuang Granule have proved helpful in viral infection and septic shock.

Hypothesis/purpose: The objective of the current study was to compare the efficacy and safety of the traditional Chinese medicine, Shenhuang Granule, with standard care in hospitalized patients with severe/critical COVID-19.

View Article and Find Full Text PDF

The coronavirus disease 2019 (COVID-19) pandemic has become a public health emergency of global concern. In China, traditional Chinese medicine has been widely administered to COVID-19 patients without sufficient evidence. To evaluate the efficacy of Shenhuang Granule (SHG) for treating critically ill patients with COVID-19, we included in this study 118 patients who were admitted to the ICU of Tongji Hospital between January 28, 2020 and March 28, 2020.

View Article and Find Full Text PDF

Currently, little in-depth evidence is known about the application of extracorporeal membrane oxygenation (ECMO) therapy in coronavirus disease 2019 (COVID-19) patients. This retrospective multicenter cohort study included patients with COVID-19 at 7 designated hospitals in Wuhan, China. The patients were followed up until June 30, 2020.

View Article and Find Full Text PDF

Introduction: Tanshinone IIa (TSA) has been approved to treat cardiovascular diseases by the China State Food and Drug Administration. TSA has exhibited a variety of pharmacological effects, including vasodilator, antioxidant, anti-inflammatory, and anti-tumor properties. Endothelial cells play an important physiological role in vascular homeostasis and control inflammation, coagulation, and thrombosis.

View Article and Find Full Text PDF

Background: Until now, no antiviral treatment has been proven to be effective for the coronavirus disease 2019 (COVID-19). The timing of oxygen therapy was considered to have a great influence on the symptomatic relief of hypoxemia and seeking medical intervention, especially in situations with insufficient medical resources, but the evidence on the timing of oxygen therapy is limited.

Methods And Findings: Medical charts review was carried out to collect the data of hospitalized patients with COVID-19 infection confirmed in Tongji hospital, Wuhan from 30th December 2019 to 8th March 2020.

View Article and Find Full Text PDF

Coronavirus Disease 2019 (COVID-19) was first identified in China at the end of 2019. Acute respiratory distress syndrome (ARDS) represents the most common and serious complication of COVID-19. Cytokine storms are a pathophysiological feature of COVID-19 and play an important role in distinguishing hyper-inflammatory subphenotypes of ARDS.

View Article and Find Full Text PDF

With a population of 1.4 billion, China shares the largest burden of rare genetic diseases worldwide. Current estimates suggest that there are over ten million individuals afflicted with chromosome disease syndromes and well over one million individuals with monogenic disease.

View Article and Find Full Text PDF

Alpinetin, a novel plant flavonoid isolated from Alpinia katsumadai Hayata, has been demonstrated to have anti-inflammatory and antioxidant effects. However, the effects of alpinetin on lipopolysaccharide (LPS)-induced acute kidney injury have not been reported. In the present study, we investigated the protective effects and the underlying mechanism of alpinetin against LPS-induced acute kidney injury in mice.

View Article and Find Full Text PDF

The aim of the present study was to analyze the expression of sex-determining region Y-related high mobility group box 4 (SOX4) in non-small cell lung cancer (NSCLC) and its correlation with clinicopathologic characteristics, including the survival of NSCLC patients. To observe initially the expression status of SOX4 in lung squamous cell carcinoma and adenocarcinoma at gene expression omnibus. The expression of SOX4 mRNA and protein was examined in NSCLC tissues and normal lung tissues through real-time PCR and immunohistochemistry.

View Article and Find Full Text PDF

Objectives: This study explores the mechanism of tanshinone IIA (TSN)-mediated inhibition of myocardial fibrosis by investigating the effect of TSN on transforming growth factor β1 (TGFβ1) signal transduction in rat cardiac fibroblasts (CFs).

Materials And Methods: CFs were isolated from neonatal Sprague-Dawley rats by trypsin digestion and differential adhesion and stimulated with 5 ng/mL TGFβ1 and TSN (10(-6), 10(-5), or 10(-4) mol/L). The expression of fibronectin (FN) mRNA in the CFs was determined using reverse transcriptase-polymerase chain reaction and the protein expression of FN and Smads in CFs was detected using Western blot.

View Article and Find Full Text PDF

Phospholipase A2 (PLA2) is a key enzyme in the production of diverse mediators of inflammatory conditions, which possesses an open active pocket that is physicochemically compatible with a variety of small-molecule substrates and peptide inhibitors. Although various peptides and peptide analogues have been identified to have inhibitory activity against PLA2 originated from animals and plants, only very few were designed for human secreted PLA2 (hsPLA2), an attractive target of inflammatory arthritis. Considering that the catalytic domains of PLA2 family members across different species are highly conserved in primary sequence, advanced structure, and biological function, in this study, we proposed a synthetic pipeline to implement structure-based grafting, mutation, and optimization of peptide ligands from the snake PLA2-peptide complex crystal structures into the active pocket of apo hsPLA2 structure to computationally generate a large number of potential peptide inhibitors for hsPLA2, and the hsPLA2 inhibitory potency of few highly promising candidates arising from the theoretical analysis was determined.

View Article and Find Full Text PDF

Sestrin-2 (SESN2) is a conserved antioxidant protein that is activated upon oxidative stress and protects cells against reactive oxygen species (ROS). However, the role of SESN2 in neurodegenerative diseases, especially in Parkinson's disease (PD), has not yet been elucidated. In this study, we found that expression of SESN2 is elevated in the midbrain of patients with PD.

View Article and Find Full Text PDF

PGC-1-related coactivator (PRC) is a growth-regulated transcriptional cofactor known to activate many of the nuclear genes specifying mitochondrial respiratory function. Endothelial dysfunction is a prominent feature found in many inflammatory diseases. Adhesion molecules, such as VCAM-1, mediate the attachment of monocytes to endothelial cells, thereby playing an important role in endothelial inflammation.

View Article and Find Full Text PDF

This study examined the effect of tanshinone II A (TSN II A) on the cardiac fibrosis induced by transforming growth factor β1 (TGF-β1) and the possible mechanisms. Cardiac fibroblasts were isolated from cardiac tissues of neonatal Sprague-Dawley (SD) rats by the trypsin digestion and differential adhesion method. The cells were treated with 5 ng/mL TGF-β1 alone or pretreated with TSN II A at different concentrations (10(-5) mol/L, 10(-4) mol/L).

View Article and Find Full Text PDF

Objective: To explore the protective effect of sodium tanshinone IIA sulfonate (STS) on small: intestine injury in rats with sepsis and its possible mechanism.

Methods: According to a random number table, 24 Tats were randomly divided into 3 groups: sham operation group (sham group), sepsis model group (model group) and STS treatment group (STS group), with 8 Tats in each group. A rat model of sepsis was induced by cecal ligation and puncture (CLP) for 5 h.

View Article and Find Full Text PDF

Background: Noninvasive prenatal diagnosis of trisomy 21 (T21) has recently been shown to be achievable by massively parallel sequencing of maternal plasma on a sequencing-by-synthesis platform. The quantification of several other human chromosomes, including chromosomes 18 and 13, has been shown to be less precise, however, with quantitative biases related to the chromosomal GC content.

Methods: Maternal plasma DNA from 10 euploid and 5 T21 pregnancies was sequenced with a sequencing-by-ligation approach.

View Article and Find Full Text PDF

The changes of proto-oncogene c-fos and c-jun mRNA expression in angiotensin II (Ang II)-induced hypertrophy and effects of sodium tanshinone IIA sulfonate (STS) in the primary culture of neonatal rat cardiomyocytes were investigated. Twelve neonatal clean grade Wistar rats were selected. The cardiomyocytes were isolated, cultured and divided according to different treatments in the medium.

View Article and Find Full Text PDF

Objective: To investigate the changes of proto-oncogene c-fos, c-jun mRNA expression in angiotensin II (Ang II)-induced hypertrophy and effects of tanshinone II A (Tan) in the primary culture of neonatal rat cardiomyocytes.

Method: Twelve neonatal Wistar rats aged one day old of clean grade and both sexes were selected to isolate and culture cardiomyocytes. The cardiomyocytes were divided into: normal control group, Ang II (10(-6) mol x L(-1)) group, Ang II (10(-6) mol x L(-1)) +Tan (10(-8) g x L(-1)) group, Ang II (10(-6) mol x L(-1)) + valsartan (10(-6) mol x L(-1)) group, Tan (10(-8) g x L(-1)) group, valsartan (10(-6) mol x L(-1)) group.

View Article and Find Full Text PDF