Rapid and ultra-sensitive detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is critical for early screening and management of COVID-19. Currently, the real-time reverse transcription polymerase chain reaction (rRT-PCR) is the primary laboratory method for diagnosing SARS-CoV-2. It is not suitable for at-home COVID-19 diagnostic test due to the long operating time, specific equipment, and professional procedures.
View Article and Find Full Text PDFSn-based compounds with buffer matrixes possessing high theoretical capacity, low working voltage, and alleviation of the volume expansion of Sn are ideal materials for lithium storage. However, it is challenging to confine well-dispersed Sn within a lithium active matrix because low-melting-point Sn tends to agglomerate. Here, we apply a metal-organic framework (MOF) chemistry between Sn-nodes and lithium active ligands to create two Sn-based MOFs comprising Sn(dobdc) and Sn(dobpdc) with extended ligands from Hdobdc (2,5-dioxido-1,4-benzenedicarboxylate acid) to Hdobpdc (4,4'-dioxidobiphenyl-3,3'-dicarboxylate acid) with molecule-level homodispersion of Sn in organic matrixes for lithium storage.
View Article and Find Full Text PDFLithium-ion batteries (LIBs) have enabled wireless revolution of portable digital products. However, for high-performance applications such as large-scale energy storage and next-generation portable devices, the energy and power densities as well as the cycle life of LIBs still need to be further enhanced. This can be realized by improving the electrochemical performance of the three main components of LIBs: cathode, anode, and electrolyte.
View Article and Find Full Text PDF