Through technological innovations, patient cohorts can be examined from multiple views with high-dimensional, multiscale biomedical data to classify clinical phenotypes and predict outcomes. Here, we aim to present our approach for analyzing multimodal data using unsupervised and supervised sparse linear methods in a COVID-19 patient cohort. This prospective cohort study of 149 adult patients was conducted in a tertiary care academic center.
View Article and Find Full Text PDFThrough technological innovations, patient cohorts can be examined from multiple views with high-dimensional, multiscale biomedical data to classify clinical phenotypes and predict outcomes. Here, we aim to present our approach for analyzing multimodal data using unsupervised and supervised sparse linear methods in a COVID-19 patient cohort. This prospective cohort study of 149 adult patients was conducted in a tertiary care academic center.
View Article and Find Full Text PDFWe propose a method for supervised learning with multiple sets of features ("views"). The multiview problem is especially important in biology and medicine, where "-omics" data, such as genomics, proteomics, and radiomics, are measured on a common set of samples. "Cooperative learning" combines the usual squared-error loss of predictions with an "agreement" penalty to encourage the predictions from different data views to agree.
View Article and Find Full Text PDFElectronic phenotyping is the task of ascertaining whether an individual has a medical condition of interest by analyzing their medical record and is foundational in clinical informatics. Increasingly, electronic phenotyping is performed via supervised learning. We investigate the effectiveness of multitask learning for phenotyping using electronic health records (EHR) data.
View Article and Find Full Text PDF