Deep tissue injury (DTI), a type of pressure ulcer, arises in the muscle layers adjacent to bony prominences due to sustained mechanical loading. DTI presents a serious problem in the clinic, as it is often not visible until reaching an advanced stage. One of the causes can be direct mechanical deformation of the muscle tissue and cell.
View Article and Find Full Text PDFCardiomyocyte progenitor cells (CMPCs) are a candidate cell source for cardiac regenerative therapy. However, like other stem cells, after transplantation in the heart, cell retention and differentiation capacity of the CMPCs are low. Combining cells with biomaterials might overcome this problem.
View Article and Find Full Text PDFAggressive tumor cells can obtain the ability to transdifferentiate into cells with endothelial features and thus form vasculogenic networks. This phenomenon, called vasculogenic mimicry (VM), is associated with increased tumor malignancy and poor clinical outcome. To identify novel key molecules implicated in the process of vasculogenic mimicry, microarray analysis was performed to compare gene expression profiles of aggressive (VM+) and non-aggressive (VM-) cells derived from Ewing sarcoma and breast carcinoma.
View Article and Find Full Text PDFCardiac tissue is composed of muscle and non-muscle cells, surrounded by extracellular matrix (ECM) and spatially organized into a complex three-dimensional (3D) architecture to allow for coordinated contraction and electrical pulse propagation. Despite emerging evidence for cardiomyocyte turnover in mammalian hearts, the regenerative capacity of human cardiac tissue is insufficient to recover from damage, e.g.
View Article and Find Full Text PDFEngineered muscle tissues can be used for several different purposes, which include the production of tissues for use as a disease model in vitro, e.g. to study pressure ulcers, for regenerative medicine and as a meat alternative (1).
View Article and Find Full Text PDFSupramolecular control of adhesion of cells is demonstrated using synthetic integrin binding RGD peptide-ferrocene conjugates that were immobilized via host-guest chemistry onto cucurbit[7]uril coated gold surfaces.
View Article and Find Full Text PDFCell-based therapy has emerged as a treatment modality for myocardial repair. Especially cardiac resident stem cells are considered a potential cell source since they are able to differentiate into cardiomyocytes and have improved heart function after injury in a preclinical model for myocardial infarction. To avoid or repair myocardial damage it is important not only to replace the lost cardiomyocytes, but also to remodel and replace the scar tissue by "healthy" extracellular matrix (ECM).
View Article and Find Full Text PDFInnovative strategies based on regenerative medicine, in particular tissue engineering of skeletal muscle, are promising for treatment of patients with skeletal muscle damage. However, the efficiency of satellite cell differentiation in vitro is suboptimal. MicroRNAs are involved in the regulation of cell proliferation and differentiation.
View Article and Find Full Text PDFSkeletal muscle tissue engineering has major promise for regenerative treatment of patients suffering from muscle loss due to, for example, traumatic injury, but faces considerable challenges to progress toward clinical application. In the present study the creation of an aligned prevascularized muscle tissue was addressed. We hypothesized that an aligned vascularized three-dimensional (3D) muscle tissue can be induced in vitro by merely using uniaxial stress.
View Article and Find Full Text PDFSkeletal muscle tissue engineering still does not result in the desired functional properties and texture as preferred for regenerative medicine and meat production applications. Electrical stimulation has been appropriately used as a tool to advance muscle cell maturation in vitro, thereby simulating nerve stimulation, as part of the muscle cell niche in vivo. We first investigated the effects of electrical stimulation protocols in two-dimensional (2D) monolayers of C2C12 and translated these protocols to a three-dimensional (3D) model system, based on a collagen type I/Matrigel(™) hydrogel.
View Article and Find Full Text PDFInflammation plays a prominent role in tumor growth. Anti-inflammatory drugs have therefore been proposed as anti-cancer therapeutics. In this study, we determined the anti-angiogenic activity of a single dose of liposomal prednisolone phosphate (PLP-L), by monitoring tumor vascular function and viability over a period of one week.
View Article and Find Full Text PDFTumor-associated inflammation has been recognized as an important tumor growth propagator and, therefore, represents an attractive target for anti-cancer therapy. In the current study, inspired by recent findings on the anti-tumor activity of liposomal glucocorticoids, we introduce paramagnetic and fluorescent liposomes, encapsulating prednisolone phosphate (PLP), to evaluate the local delivery of liposomal glucocorticoids to the tumor and its importance for the therapeutic response. The new multifunctional liposomes (Gd-PLP-L) (120nm diameter, 5.
View Article and Find Full Text PDFAngiogenesis is essential for tumor growth and metastatic potential and for that reason considered an important target for tumor treatment. Noninvasive imaging technologies, capable of visualizing tumor angiogenesis and evaluating the efficacy of angiostatic therapies, are therefore becoming increasingly important. Among the various imaging modalities, magnetic resonance imaging (MRI) is characterized by a superb spatial resolution and anatomical soft-tissue contrast.
View Article and Find Full Text PDFSkeletal muscle is an appealing topic for tissue engineering because of its variety in applications for regenerative medicine, in vitro physiological model systems, and in vitro meat production. Besides conventional biochemical cues to promote muscle tissue maturation in vitro, biophysical stimuli are necessary to reach the desired functionality and texture of the engineered tissue. Stretch, caused by active movements of the body, is an important factor present in the niche of muscle progenitor cells in vivo.
View Article and Find Full Text PDFEffective and specific targeting of nanoparticles is of paramount importance in the fields of targeted therapeutics and diagnostics. In the current study, we investigated the targeting efficacy of nanoparticles that were functionalized with two angiogenesis-specific targeting ligands, an alpha(v)beta(3) integrin-specific and a galectin-1-specific peptide. We show in vitro, using optical techniques and MRI, that the dual-targeting approach produces synergistic targeting effects, causing a dramatically elevated uptake of nanoparticles as compared to single ligand targeting.
View Article and Find Full Text PDFIn recent years, numerous Gd(3+)-based contrast agents have been developed to enable target-specific MR imaging of in vivo processes at the molecular level. The combination of powerful contrast agents and amplification strategies, aimed at increasing the contrast agent dose at the target site, is an often-used strategy to improve the sensitivity of biomarker detection. One such amplification mechanism is to target a disease-specific cell membrane receptor that can undergo multiple rounds of internalization following ligand binding and thus shuttle a sizeable amount of contrast agent into the target cell.
View Article and Find Full Text PDFAngiogenic, that is, newly formed, blood vessels play an important role in tumor growth and metastasis and are a potential target for tumor treatment. In previous studies, the alpha(v)beta(3) integrin, which is strongly expressed in angiogenic vessels, has been used as a target for Arg-Gly-Asp (RGD)-functionalized nanoparticulate contrast agents for magnetic resonance imaging-based visualization of angiogenesis. In the present study, the target-to-background ratio was increased by diminishing the nonspecific contrast enhancement originating from contrast material present in the blood pool.
View Article and Find Full Text PDFVarious clinical and experimental observations detected an immunological host defense in cutaneous melanoma. In order to investigate the prognostic value of leukocyte effector mechanisms, we examined the presence of different subsets of leukocytes in tumor samples of 58 patients diagnosed with primary cutaneous melanoma. The presence of T lymphocytes, cytotoxic T lymphocytes, B lymphocytes, CD16+ cells and macrophages was correlated to Breslow depth.
View Article and Find Full Text PDFSolid evidence for a relationship between lymphangiogenesis and prognosis in human breast cancer is still lacking. Evidence for ongoing lymphangiogenesis in breast cancer is only provided by animal studies. In the present study we investigated lymphatic vessel density as well as the expression level of the lymphangiogenic factors VEGF-C and -D in a series of 121 ductal breast cancer tissues using immunohistochemical stainings.
View Article and Find Full Text PDFNoninvasive diagnostic imaging methods to establish the efficacy of angiostatic therapies are becoming increasingly important with the first Food and Drug Administration approvals of such agents. Magnetic resonance molecular imaging is an imaging technique that allows the visualization of pathological processes in vivo with a better spatial resolution as compared with nuclear methods, such as photon emission tomography and single photon emission computed tomography. In this study, we used alpha(v)beta3 targeted bimodal liposomes to quantitate angiogenesis in a tumor mouse model with magnetic resonance imaging (MRI) and to evaluate the therapeutic efficacy of the angiogenesis inhibitors anginex and endostatin.
View Article and Find Full Text PDFTumor escape from immunity, as well as the failure of several anti-cancer vaccination and cellular immunotherapy approaches, is suggested to be due to the angiogenesis-mediated suppression of endothelial cell (EC) adhesion molecules involved in leukocyte-vessel wall interactions. We hypothesized that inhibition of angiogenesis would overcome this escape from immunity. We investigated this in vivo by means of intravital microscopy and ex vivo by immunohistochemistry in two mouse tumor models.
View Article and Find Full Text PDFIn oncological research, there is a great need for imaging techniques that specifically identify angiogenic blood vessels in tumors on the basis of differences in the expression level of biomolecular markers. In the angiogenic cascade, different cell surface receptors, including the alphavbeta3-integrin, are strongly expressed on activated endothelial cells. In the present study, we aimed to image angiogenesis by detecting the expression of alphavbeta3 in tumor bearing mice with a combination of magnetic resonance imaging (MRI) and fluorescence microscopy.
View Article and Find Full Text PDFEndothelial cells involved in vasculogenesis and angiogenesis are key targets in cancer therapy. Recent evidence suggests that tumor cells can express some genes typically expressed by endothelial cells and form extracellular matrix-rich tubular networks, phenomena known as vasculogenic mimicry. We examined the effects of three angiogenesis inhibitors (i.
View Article and Find Full Text PDFBased on structure-activity relationships of the angiostatic beta-sheet-forming peptide anginex, we have designed a mimetic, 6DBF7, which inhibits angiogenesis and tumor growth in mice. 6DBF7 is composed of a beta-sheet-inducing dibenzofuran (DBF)-turn mimetic and two short key amino acid sequences from anginex. This novel antiangiogenic molecule is more effective in vivo than parent anginex.
View Article and Find Full Text PDF