College students increasingly identify as bicultural. Bicultural identity integration (BII), the extent to which an individual can effectively manage their various cultural identities, has been associated with mental health, including depressive symptoms. However, few studies have examined the association between BII and eating behaviors among racial/ethnic minority students, even though these students are at high risk for disordered eating behaviors.
View Article and Find Full Text PDFApproximately half of annual musculoskeletal injuries in the US involve tendon tears. The naturally hypocellular and hypovascular tendon environment makes tendons injury-prone and heal slowly. Tendon tissue engineering strategies often use biomimetic scaffolds combined with bioactive factors and/or cells to enhance healing.
View Article and Find Full Text PDFTendon injuries are common and account for up to 50% of musculoskeletal injuries in the United States. The poor healing nature of the tendon is attributed to poor vascularization and cellular composition. In the absence of FDA-approved growth factors for tendon repair, engineering strategies using bioactive factors, donor cells, and delivery matrices to promote tendon repair and regeneration are being explored.
View Article and Find Full Text PDFCorrection for 'Growing a backbone - functional biomaterials and structures for intervertebral disc (IVD) repair and regeneration: challenges, innovations, and future directions' by Matthew D. Harmon et al., Biomater.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
April 2020
Anterior cruciate ligament (ACL) plays a crucial role stabilizing the knee joint while connecting tibia to femur. Lack of proper treatment of injured ACL can lead to meniscus tear and osteoarthritis. Interference screws secure the graft tissue for superior integration of graft on host tissue during autograft fixation.
View Article and Find Full Text PDFBack pain and associated maladies can account for an immense amount of healthcare cost and loss of productivity in the workplace. In particular, spine related injuries in the US affect upwards of 5.7 million people each year.
View Article and Find Full Text PDFUse of growth factors as biochemical molecules to elicit cellular differentiation is a common strategy in tissue engineering. However, limitations associated with growth factors, such as short half-life, high effective physiological doses, and high costs, have prompted the search for growth factor alternatives, such as growth factor mimics and other proteins. This work explores the use of insulin protein as a biochemical factor to aid in tendon healing and differentiation of cells on a biomimetic electrospun micro-nanostructured scaffold.
View Article and Find Full Text PDFRicinoleic acid (RA) has potential to promote wound healing because of its analgesic and anti-inflammatory properties. This study investigates the synthesis and characterization of RA liposomes infused in a hydrogel for topical application. Lecithin liposomes containing RA were prepared and incorporated into a chitosan solution and were subsequently cross-linked with dialdehyde β-cyclodextrin (Di-β-CD).
View Article and Find Full Text PDFBone tissue engineering strategies utilize biodegradable polymeric matrices alone or in combination with cells and factors to provide mechanical support to bone, while promoting cell proliferation, differentiation, and tissue ingrowth. The performance of mechanically competent, micro-nanostructured polymeric matrices, in combination with bone marrow stromal cells (BMSCs), is evaluated in a critical sized bone defect. Cellulose acetate (CA) is used to fabricate a porous microstructured matrix.
View Article and Find Full Text PDFRotator cuff (RC) tears represent a large proportion of musculoskeletal injuries attended to at the clinic and thereby make RC repair surgeries one of the most widely performed musculoskeletal procedures. Despite the high incidence rate of RC tears, operative treatments have provided minimal functional gains and suffer from high re-tear rates. The hypocellular nature of tendon tissue poses a limited capacity for regeneration.
View Article and Find Full Text PDFScaffold architecture, surface topography, biochemical and mechanical cues have been shown to significantly improve cellular events and in vivo tissue regeneration. Specifically electrospun nanofiber matrices have gained tremendous interest due to their intrinsic structural resemblance to native tissue extracellular matrix (ECM). The present study reports on the electrospun nanofiber matrices of polycaprolactone (PCL)-chitosan (CS) blends and effect of type I collagen surface functionalization in regulating rat bone marrow derived stromal cells (rBMSCs) differentiation into osteogenic lineage.
View Article and Find Full Text PDFPurpose: The purpose of this study was to examine, in vitro, the cellular response of human mesenchymal stem cells (MSCs) to sample types of commercially available scaffolds in comparison with control, native tendon tissue (fresh-frozen rotator cuff tendon allograft).
Methods: MSCs were defined by (1) colony-forming potential; (2) ability to differentiate into tendon, cartilage, bone, and fat tissue; and (3) fluorescence-activated cell sorting analysis (CD73, CD90, CD45). Samples were taken from fresh-frozen human rotator cuff tendon (allograft), human highly cross-linked collagen membrane (Arthroflex; LifeNet Health, Virginia Beach, VA), porcine non-cross-linked collagen membrane (Mucograft; Geistlich Pharma, Lucerne, Switzerland), a human platelet-rich fibrin matrix (PRF-M), and a fibrin matrix based on platelet-rich plasma (ViscoGel; Arthrex, Naples, FL).
Scaffold based bone tissue engineering (BTE) has made great progress in regenerating lost bone tissue. Materials of natural and synthetic origin have been used for scaffold fabrication. Scaffolds derived from natural polymers offer greater bioactivity and biocompatibility with mammalian tissues to favor tissue healing, due to their similarity to native extracellular matrix (ECM) components.
View Article and Find Full Text PDFTissue engineering aims to repair, restore, and regenerate lost or damaged tissues by using biomaterials, cells, mechanical forces and factors (chemical and biological) alone or in combination. Growth factors are routinely used in the tissue engineering approach to expedite the process of regeneration. The growth factor approach has been hampered by several complications including high dose requirements, lower half-life, protein instability, higher costs and undesired side effects.
View Article and Find Full Text PDF