Deep learning and computer vision, using remote sensing and drones, are 2 promising nondestructive methods for plant monitoring and phenotyping. However, their applications are infeasible for many crop systems under tree canopies, such as coffee crops, making it challenging to perform plant monitoring and phenotyping at a large spatial scale at a low cost. This study aims to develop a geographic-scale monitoring method for coffee cherry counting, supported by an artificial intelligence (AI)-powered citizen science approach.
View Article and Find Full Text PDF