Publications by authors named "Daisy Lio"

Article Synopsis
  • BAX and BAK are key proteins in the BCL2 family that help trigger apoptosis by causing holes in the mitochondrial membrane, switching between inactive and activated forms to connect with other proteins.
  • Research introduced a unique antibody, 14G6, which specifically targets and binds to the inactive form of BAK, revealing important structural details needed for its activation.
  • Experiments showed that 14G6 can inhibit the activation of BAK in leukemia cells, suggesting its potential as a tool for monitoring BAK levels during cancer treatment involving BH3 mimetics.
View Article and Find Full Text PDF

Pro-apoptotic BAK and BAX are activated by BH3-only proteins to permeabilise the outer mitochondrial membrane. The antibody 7D10 also activates BAK on mitochondria and its epitope has previously been mapped to BAK residues in the loop connecting helices α1 and α2 of BAK. A crystal structure of the complex between the Fv fragment of 7D10 and the BAK mutant L100A suggests a possible mechanism of activation involving the α1-α2 loop residue M60.

View Article and Find Full Text PDF

BAK and BAX, the effectors of intrinsic apoptosis, each undergo major reconfiguration to an activated conformer that self-associates to damage mitochondria and cause cell death. However, the dynamic structural mechanisms of this reconfiguration in the presence of a membrane have yet to be fully elucidated. To explore the metamorphosis of membrane-bound BAK, we employed hydrogen-deuterium exchange mass spectrometry (HDX-MS).

View Article and Find Full Text PDF

A body of data supports the existence of core (α2-α5) dimers of BAK and BAX in the oligomeric, membrane-perturbing conformation of these essential apoptotic effector molecules. Molecular structures for these dimers have only been captured for truncated constructs encompassing the core domain alone. Here, we report a crystal structure of BAK α2-α8 dimers (i.

View Article and Find Full Text PDF

Hyperactivation of SRC-family protein kinases (SFKs) contributes to the initiation and progression of human colorectal cancer (CRC). Since oncogenic mutations of SFK genes are rare in human CRC, we investigated if SFK hyperactivation is linked to dysregulation of their upstream inhibitors, C-terminal SRC kinase (CSK) and its homolog CSK-homologous kinase (CHK/MATK). We demonstrate that expression of CHK/MATK but not CSK was significantly downregulated in CRC cell lines and primary tumours compared to normal colonic tissue.

View Article and Find Full Text PDF
Article Synopsis
  • Interleukin (IL) 11 interacts with its receptor IL-11Rα and the β-subunit gp130 to activate various signaling pathways, which can be linked to diseases like cancer and fibrosis.
  • The first crystal structure of IL-11Rα and IL-11 has been presented, revealing important details about their interaction, especially concerning mutations associated with diseases.
  • The study shows that specific mutations in IL-11Rα can destabilize its structure, affecting how it binds to IL-11, and suggests that understanding this interaction could lead to new treatment approaches.
View Article and Find Full Text PDF

Venetoclax is a first-in-class cancer therapy that interacts with the cellular apoptotic machinery promoting apoptosis. Treatment of patients suffering chronic lymphocytic leukaemia with this BCL-2 antagonist has revealed emergence of a drug-selected BCL-2 mutation (G101V) in some patients failing therapy. To understand the molecular basis of this acquired resistance we describe the crystal structures of venetoclax bound to both BCL-2 and the G101V mutant.

View Article and Find Full Text PDF

The Parkinson's disease (PD)-causative leucine-rich repeat kinase 2 (LRRK2) belongs to the Roco family of G-proteins comprising a Ras-of-complex (Roc) domain followed by a C-terminal of Roc (COR) domain in tandem (called Roc-COR domain). Two prokaryotic Roc-COR domains have been characterized as 'G proteins activated by guanine nucleotide-dependent dimerization' (GADs), which require dimerization for activation of their GTPase activity and bind guanine nucleotides with relatively low affinities. Additionally, LRRK2 Roc domain in isolation binds guanine nucleotides with relatively low affinities.

View Article and Find Full Text PDF

Background: C-terminal Src kinase (Csk) and Csk-homologous kinase (Chk) are the major endogenous inhibitors of Src-family kinases (SFKs). They employ two mechanisms to inhibit SFKs. First, they phosphorylate the C-terminal tail tyrosine which stabilizes SFKs in a closed inactive conformation by engaging the SH2 domain in cis.

View Article and Find Full Text PDF

Dephosphorylation of four major C-terminal tail sites and occupancy of the phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2]-binding site of PTEN cooperate to activate its phospholipid phosphatase activity and facilitate its recruitment to plasma membrane. Our investigation of the mechanism by which phosphorylation of these C-terminal sites controls the PI(4,5)P2-binding affinity and catalytic activity of PTEN resulted in the following findings. First, dephosphorylation of all four sites leads to full activation; and phosphorylation of any one site significantly reduces the intrinsic catalytic activity of PTEN.

View Article and Find Full Text PDF

The Src-family tyrosine kinases (SFKs) are oncogenic enzymes that contribute to the initiation and progression of many types of cancer. In normal cells, SFKs are kept in an inactive state mainly by phosphorylation of a consensus regulatory tyrosine near the C-terminus (Tyr(530) in the SFK c-Src). As recent data indicate that tyrosine modification enhances binding of metal ions, the hypothesis that SFKs might be regulated by metal ions was investigated.

View Article and Find Full Text PDF

An improved understanding of the roles of protein kinases in intracellular signalling and disease progression has driven significant advances in protein kinase inhibitor discovery. Peptide inhibitors that target the kinase protein substrate-binding site have continued to attract attention. In the present paper, we describe a novel JNK (c-Jun N-terminal kinase) inhibitory peptide PYC71N, which inhibits JNK activity in vitro towards a range of recombinant protein substrates including the transcription factors c-Jun, ATF2 (activating trancription factor 2) and Elk1, and the microtubule regulatory protein DCX (doublecortin).

View Article and Find Full Text PDF

Csk-homologous kinase (CHK) is an important endogenous inhibitor constraining the oncogenic actions of Src-family kinases (SFKs) in cells. It suppresses SFK activity by specifically phosphorylating the conserved regulatory tyrosine near the C-terminus of SFKs. In addition to phosphorylation, CHK employs a novel non-catalytic inhibitory mechanism to suppress SFK activity.

View Article and Find Full Text PDF

The Parkinson's disease (PD) causative PINK1 gene encodes a mitochondrial protein kinase called PTEN-induced kinase 1 (PINK1). The autosomal recessive pattern of inheritance of PINK1 mutations suggests that PINK1 is neuroprotective and therefore loss of PINK1 function causes PD. Indeed, overexpression of PINK1 protects neuroblastoma cells from undergoing neurotoxin-induced apoptosis.

View Article and Find Full Text PDF

Although C-terminal Src kinase (CSK)-homologous kinase (CHK) is generally believed to inactivate Src-family tyrosine kinases (SFKs) by phosphorylating their consensus C-terminal regulatory tyrosine (Tyr(T)), exactly how CHK inactivates SFKs is not fully understood. Herein, we report that in addition to phosphorylating Tyr(T), CHK can inhibit SFKs by a novel non-catalytic mechanism. First, CHK directly binds to the SFK members Hck, Lyn, and Src to form stable protein complexes.

View Article and Find Full Text PDF