Publications by authors named "Daisy H Dent"

Scavenging is a widespread feeding strategy involving a diversity of taxa from different trophic levels, from apex predators to obligate scavengers. Scavenger species play a crucial role in ecosystem functioning by removing carcasses, recycling nutrients and preventing disease spread. Understanding the trophic roles of scavenger species can help identify specialized species with unique roles and species that may be more vulnerable to ecological changes.

View Article and Find Full Text PDF
Article Synopsis
  • Animals can help fix our environment and save nature at the same time.
  • Around 25% of forest restoration projects can get better with the help of animals.
  • Half of these projects need us to take steps to make things better.
View Article and Find Full Text PDF
Article Synopsis
  • Secondary tropical forests are vital for carbon storage and biodiversity, making it necessary to understand their growth patterns for effective restoration and climate change strategies.
  • The study analyzed demographic information from over 500 tree species across different stages of forest succession in various climates to determine the range of demographic strategies (growth, mortality, recruitment rates) present.
  • Findings indicate that early successional forests already exhibit the full range of demographic strategies found in old-growth forests, suggesting that known diversity from old-growth studies can apply broadly, but additional research in secondary forests is still needed.
View Article and Find Full Text PDF

Determining how fully tropical forests regenerating on abandoned land recover characteristics of old-growth forests is increasingly important for understanding their role in conserving rare species and maintaining ecosystem services. Despite this, our understanding of forest structure and community composition recovery throughout succession is incomplete, as many tropical chronosequences do not extend beyond the first 50 years of succession. Here, we examined trajectories of forest recovery across eight 1-hectare plots in middle and later stages of forest succession (40-120 years) and five 1-hectare old-growth plots, in the Barro Colorado Nature Monument (BCNM), Panama.

View Article and Find Full Text PDF

The core principle shared by most theories and models of succession is that, following a major disturbance, plant-environment feedback dynamics drive a directional change in the plant community. The most commonly studied feedback loops are those in which the regrowth of the plant community causes changes to the abiotic (e.g.

View Article and Find Full Text PDF

Regenerating tropical forests are increasingly important for their role in the global carbon cycle. Carbon stocks in above-ground biomass can recover to old-growth forest levels within 60-100 years. However, more than half of all carbon in tropical forests is stored below-ground, and our understanding of carbon storage in soils during tropical forest recovery is limited.

View Article and Find Full Text PDF

Seed dispersal by animals is key for restoration of tropical forests because it maintains plant diversity and accelerates community turnover. Therefore, changes in seed dispersal during forest restoration can indicate the recovery of species interactions, and yet these changes are rarely considered in forest restoration planning. In this study, we examined shifts in the importance of different seed dispersal modes during passive restoration in a tropical chronosequence spanning more than 100 years, by modelling the proportion of trees dispersed by bats, small birds, large birds, flightless mammals and abiotic means as a function of forest age.

View Article and Find Full Text PDF
Article Synopsis
  • Soil conditions are key for ecosystem restoration, influencing how well ecosystems recover after agricultural use and deforestation.
  • Soil resistance and recovery vary based on local factors like climate and soil type; for example, areas with high-activity clay show significant changes in soil properties when forested land is converted to cropland.
  • Findings suggest that while some soil properties improve during forest regrowth, others like phosphorus levels may decline, highlighting the complex dynamics of soil health in tropical ecosystems.
View Article and Find Full Text PDF

Forests that regrow naturally on abandoned fields are important for restoring biodiversity and ecosystem services, but can they also preserve the distinct regional tree floras? Using the floristic composition of 1215 early successional forests (≤20 years) in 75 human-modified landscapes across the Neotropic realm, we identified 14 distinct floristic groups, with a between-group dissimilarity of 0.97. Floristic groups were associated with location, bioregions, soil pH, temperature seasonality, and water availability.

View Article and Find Full Text PDF

Tropical forests disappear rapidly because of deforestation, yet they have the potential to regrow naturally on abandoned lands. We analyze how 12 forest attributes recover during secondary succession and how their recovery is interrelated using 77 sites across the tropics. Tropical forests are highly resilient to low-intensity land use; after 20 years, forest attributes attain 78% (33 to 100%) of their old-growth values.

View Article and Find Full Text PDF

One-third of all Neotropical forests are secondary forests that regrow naturally after agricultural use through secondary succession. We need to understand better how and why succession varies across environmental gradients and broad geographic scales. Here, we analyze functional recovery using community data on seven plant characteristics (traits) of 1,016 forest plots from 30 chronosequence sites across the Neotropics.

View Article and Find Full Text PDF

Tropical secondary forests are increasingly important for carbon sequestration and biodiversity conservation worldwide; yet, we still cannot accurately predict community turnover during secondary succession. We propose that integrating niche differentiation and dispersal limitation will generate an improved theoretical explanation of tropical forest succession. The interaction between seed sources and dispersers regulates seed movement throughout succession, and recent technological advances in animal tracking and molecular analyses enable us to accurately monitor seed movement as never before.

View Article and Find Full Text PDF

Understanding tropical forest dynamics and planning for their sustainable management require efficient, yet accurate, predictions of the joint dynamics of hundreds of tree species. With increasing information on tropical tree life histories, our predictive understanding is no longer limited by species data but by the ability of existing models to make use of it. Using a demographic forest model, we show that the basal area and compositional changes during forest succession in a neotropical forest can be accurately predicted by representing tropical tree diversity (hundreds of species) with only five functional groups spanning two essential trade-offs-the growth-survival and stature-recruitment trade-offs.

View Article and Find Full Text PDF

Reducing atmospheric CO is an international priority. One way to assist stabilising and reducing CO is to promote secondary tropical forest regrowth on abandoned agricultural land. However, relationships between above- and belowground carbon stocks with secondary forest age and specific soil nutrients remain unclear.

View Article and Find Full Text PDF
Article Synopsis
  • Tropical forests are rapidly converted for agriculture but can regrow naturally through processes called secondary succession, which vary by forest type.
  • Analysis of 1,403 plots across the Neotropics reveals that in wet forests, succession moves from low to high wood density, while in dry forests, it goes from high to low due to different environmental stresses.
  • Understanding these patterns can help optimize species selection for reforestation efforts by matching the wood density of chosen species to that of early successional communities in the specific climate conditions.
View Article and Find Full Text PDF

Old-growth tropical forests harbor an immense diversity of tree species but are rapidly being cleared, while secondary forests that regrow on abandoned agricultural lands increase in extent. We assess how tree species richness and composition recover during secondary succession across gradients in environmental conditions and anthropogenic disturbance in an unprecedented multisite analysis for the Neotropics. Secondary forests recover remarkably fast in species richness but slowly in species composition.

View Article and Find Full Text PDF

Secondary forest habitats are increasingly recognized for their potential to conserve biodiversity in the tropics. However, the development of faunal assemblages in secondary forest systems varies according to habitat quality and species-specific traits. In this study, we predicted that the recovery of bird assemblages is dependent on secondary forest age and level of isolation, the forest stratum examined, and the species' traits of feeding guild and body mass.

View Article and Find Full Text PDF

The nutrient demands of regrowing tropical forests are partly satisfied by nitrogen-fixing legume trees, but our understanding of the abundance of those species is biased towards wet tropical regions. Here we show how the abundance of Leguminosae is affected by both recovery from disturbance and large-scale rainfall gradients through a synthesis of forest inventory plots from a network of 42 Neotropical forest chronosequences. During the first three decades of natural forest regeneration, legume basal area is twice as high in dry compared with wet secondary forests.

View Article and Find Full Text PDF

Tropical forest fragmentation creates insular biological communities that undergo species loss and changes in community composition over time, due to area- and edge-effects. Woody lianas thrive in degraded and secondary forests, due to their competitive advantage over trees in these habitats. Lianas compete both directly and indirectly with trees, increasing tree mortality and turnover.

View Article and Find Full Text PDF

Regrowth of tropical secondary forests following complete or nearly complete removal of forest vegetation actively stores carbon in aboveground biomass, partially counterbalancing carbon emissions from deforestation, forest degradation, burning of fossil fuels, and other anthropogenic sources. We estimate the age and spatial extent of lowland second-growth forests in the Latin American tropics and model their potential aboveground carbon accumulation over four decades. Our model shows that, in 2008, second-growth forests (1 to 60 years old) covered 2.

View Article and Find Full Text PDF

Land-use change occurs nowhere more rapidly than in the tropics, where the imbalance between deforestation and forest regrowth has large consequences for the global carbon cycle. However, considerable uncertainty remains about the rate of biomass recovery in secondary forests, and how these rates are influenced by climate, landscape, and prior land use. Here we analyse aboveground biomass recovery during secondary succession in 45 forest sites and about 1,500 forest plots covering the major environmental gradients in the Neotropics.

View Article and Find Full Text PDF

A life-history trade-off between low mortality in the dark and rapid growth in the light is one of the most widely accepted mechanisms underlying plant ecological strategies in tropical forests. Differences in plant functional traits are thought to underlie these distinct ecological strategies; however, very few studies have shown relationships between functional traits and demographic rates within a functional group. We present 8 years of growth and mortality data from saplings of 15 species of Dipterocarpaceae planted into logged-over forest in Malaysian Borneo, and the relationships between these demographic rates and four key functional traits: wood density, specific leaf area (SLA), seed mass, and leaf C:N ratio.

View Article and Find Full Text PDF