New diffractive imaging techniques using coherent x-ray beams have made possible nanometer-scale resolution imaging by replacing the optics in a microscope with an iterative phase retrieval algorithm. However, to date very high resolution imaging (< 40 nm) was limited to large-scale synchrotron facilities. Here, we present a significant advance in image resolution and capabilities for desktop soft x-ray microscopes that will enable widespread applications in nanoscience and nanotechnology.
View Article and Find Full Text PDFLight microscopy has greatly advanced our understanding of nature. The achievable resolution, however, is limited by optical wavelengths to approximately 200 nm. By using imaging and labeling technologies, resolutions beyond the diffraction limit can be achieved for specialized specimens with techniques such as near-field scanning optical microscopy, stimulated emission depletion microscopy, and photoactivated localization microscopy.
View Article and Find Full Text PDFWe present the first experimental demonstration of lensless diffractive imaging using coherent soft x rays generated by a tabletop soft-x-ray source. A 29 nm high harmonic beam illuminates an object, and the subsequent diffraction is collected on an x-ray CCD camera. High dynamic range diffraction patterns are obtained by taking multiple exposures while blocking small-angle diffraction using beam blocks of varying size.
View Article and Find Full Text PDF