Publications by authors named "Daisuke Morokuma"

Type IB DNA topoisomerases are enzymes to change the topological state of DNA molecules and are essential in studying replication, transcription, and recombination of nucleic acids in vitro. DNA topoisomerase IB from Vaccinia virus (vTopIB) is a 32 kDa, type I eukaryotic topoisomerase, which relaxed positively and negatively supercoiled DNAs without Mg and ATP. Although vTopIB has been effectively produced in E.

View Article and Find Full Text PDF

Human α-antitrypsin (AAT) is the most abundant serine proteinase inhibitor (serpin) in the human plasma. Commercially available AAT for the medications of deficiency of α-antitrypsin is mainly purified from human plasma. There is a high demand for a stable and low-cost supply of recombinant AAT (rAAT).

View Article and Find Full Text PDF

Mucin-type O-glycosylation is initiated by UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferases (ppGalNAc-Ts or PGANTs), attaching GalNAc to serine or threonine residue of a protein substrate. In the insect model from Lepidoptera, silkworm (Bombyx mori), however, O-glycosylation pathway is totally unexplored and remains largely unknown. In this study, as the first report regarding protein O-glycosylation analysis in silkworms, we verified the O-glycan profile that a common core 1 Gal (β1-3) GalNAc disaccharide branch without terminally sialylated structure is mainly formed for a baculovirus-produced human proteoglycan 4 (PRG4) protein.

View Article and Find Full Text PDF

Porcine circovirus type 2 (PCV2) is a primary causative agent of postweaningmultisystemic wasting syndrome (PMWS), which has a significant economic impact on the swine industry. The capsid protein (Cap) encoded by ORF2 of the viral genome has been used effectively as a vaccine against PCV2 infection. The Cap protein can spontaneously assemble into virus-like particles (VLPs) that are safe and highly immunogenic for vaccine applications.

View Article and Find Full Text PDF

Piwi-interacting RNAs (piRNAs) are a class of small non-coding RNAs that associate with PIWI subfamily proteins, which play an important role in transposon silencing in animal germ cell. The piRNAs biogenesis is divided into two major pathways: primary and secondary, and both pathways are independent of double-stranded RNA-processing enzyme Dicer, which processes the single-stranded RNA transcripts in microRNA (miRNA) and siRNA (small interfering RNA) pathway. Primary piRNAs are processed from long non-coding RNA precursors transcribed from piRNA clusters.

View Article and Find Full Text PDF

p62/Sequestosome-1 (p62/SQSTM1, hereafter referred to as p62) is a major adaptor that allows ubiquitinated proteins to be degraded by autophagy, and Atg8 homologs are required for p62-mediated autophagic degradation, but their relationship is still not understood in Lepidopteran insects. Here it is clearly demonstrated that the silkworm homolog of mammalian p62, Bombyx mori p62 (Bmp62), forms p62 bodies depending on its Phox and Bem1p (PB1) and ubiquitin-associated (UBA) domains. These two domains are associated with Bmp62 binding to ubiquitinated proteins to form the p62 bodies, and the UBA domain is essential for the binding, but Bmp62 still self-associates without the PB1 or UBA domain.

View Article and Find Full Text PDF
Article Synopsis
  • PIWI-interacting RNAs (piRNAs) are small RNA molecules that interact with specific proteins and are critical in germ line cell regulation, but their functions in somatic cells are not well understood.
  • The study focuses on the proteins BmArmi and BmYb in the ovarian somatic cells of Bombyx mori (silkworm), observing their co-localization with BmVasa at perinuclear structures called nuage.
  • Findings indicate that the helicase domains of BmArmi and BmYb are essential for their localization, and that BmArmi's positioning is dependent on another protein, BmAgo3, while both can form granules independently of BmVasa.
View Article and Find Full Text PDF

The KOD DNA polymerase from Thermococcus kodakarensis (Tkod-Pol) has been preferred for PCR due to its rapid elongation rate, extreme thermostability and outstanding fidelity. Here in this study, we utilized silkworm-baculovirus expression vector system (silkworm-BEVS) to express the recombinant Tkod-Pol (rKOD) with N-terminal (rKOD-N) or C-terminal (rKOD-C) tandem fusion tags. By using BEVS, we produced functional rKODs with satisfactory yields, about 1.

View Article and Find Full Text PDF

Baculovirus expression vector system (BEVS) is widely known as a mass-production tool to produce functional recombinant glycoproteins except that it may not be always suitable for medical practice due to the differences in the structure of N-linked glycans between insects and mammalian. Currently, various approaches have been reported to alter N-linked glycan structures of glycoproteins derived from insects into terminally sialylated complex-type N-glycans. In the light of those studies, we also proposed in vitro maturation of N-glycan with mass-produced and purified glycosyltransferases by silkworm-BEVS.

View Article and Find Full Text PDF

We reported previously that baculovirus AcMNPV host-ranges in silkworm strains are controlled by a novel third chromosomal locus. To further isolate the potential host factor and uncover the functional pathway involved, in this study we analyzed hemolymph proteins from AcMNPV-resistant or -sensitive silkworm strains infected with baculoviruses. All the protein spots from 2D electrophoresis were characterized by MALDI-TOF MS and further systematically assessed for differentially regulated proteins at different stages of infection.

View Article and Find Full Text PDF

Baculovirus expression vector system (BEVS) is widely used for production of recombinant eukaryotic proteins in insect larvae or cultured cells. BEVS has advantages over bacterial expression system in producing post-translationally modified secreted proteins. However, for some unknown reason, it is very difficult for insects to secrete sufficiently for certain proteins of interest.

View Article and Find Full Text PDF

The peptide-N (4)-(N-acetyl-β-D-glucosaminyl) asparagine amidase F (PNGase F) catalyzes the cleavage of N-linked oligosaccharides between the innermost GlcNAc and asparagine residues of high mannose, hybrid and complex oligosaccharides from glycoproteins. The PNGase F has broad substrate specificity and thus is extensively used for the structural and functional studies of the glycoproteins. In this study, we tried to produce active recombinant PNGase F as secreted and intracellular-expressed forms using baculovirus expression vector system (BEVS) through silkworm larvae or cultured cells.

View Article and Find Full Text PDF

DNA methylation is an important epigenetic mechanism involved in gene expression of vertebrates and invertebrates. In general, DNA methylation profile is established by de novo DNA methyltransferases (DNMT-3A, -3B) and maintainance DNA methyltransferase (DNMT-1). DNMT-1 has a strong substrate preference for hemimethylated DNA over the unmethylated one.

View Article and Find Full Text PDF

Endo-β-N-acetylglucosaminidase (Endo H) from Streptomyces plicatus hydrolyzes the core di-GlcNAc units of asparagine-linked oligosaccharides and is regarded as an important tool for glycobiology research. In the present study, we established a large-scale system to produce secreted Endo H using a silkworm-baculovirus expression system (silkworm-BES). The recombinant Endo H purified from silkworm hemolymph had activity comparable to that from recombinant Escherichia coli.

View Article and Find Full Text PDF