Optical microscopy is essential for direct observation of dynamic phenomena in living cells. According to the classic optical theories, the images obtained through light microscopes are blurred for about half the wavelength of light, and therefore small structures below this "diffraction limit" were thought unresolvable by conventional optical microscopy. In reality, accurately obtained optical images contain complete information about the observed objects.
View Article and Find Full Text PDFThis study numerically demonstrates the light absorption spectra of each base of DNA-wrapped single-walled carbon nanotubes (SWCNTs). Previous experimental and theoretical studies show that the optical properties of these composites are different from the bare SWCNTs. In this work, we investigated the bases of DNA that influence optical properties.
View Article and Find Full Text PDFSuper-resolution confocal live imaging microscopy (SCLIM) we developed provides high-speed, high-resolution, three- and four-dimensional, and multicolor simultaneous imaging. Using this technology, we are now able to observe the fine details of various dynamic events going on in living cells, such as membrane traffic and organelle dynamics. The retention using selective hooks (RUSH) system is a powerful tool to control synchronous release of natural cargo proteins of interest from the endoplasmic reticulum in mammalian cells.
View Article and Find Full Text PDFHerein, we propose a convenient method to enable pretreatment of target objects using digital holographic microscopy (DHM). As a test sample, we used diatom frustules ( sp.) as the target objects.
View Article and Find Full Text PDFDiatoms are one of the earth's major oxygen producers. For that reason, studying the floating phenomena of living diatom cells in water is an important research subject. Efficiency of photosynthesis of diatom cells may be heavily affected by their floating behavior.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2020
Carbon nanotubes (CNTs) have been extensively studied as one of the most interesting nanomaterials for over 25 years because they exhibit excellent mechanical, electrical, thermal, optical, and electrical properties. In the past decade, the number of publications and patents on cellulose and nanocellulose (NC) increased tenfold. Research on NC with excellent mechanical properties, flexibility, and transparency is accelerating due to the growing environmental problems surrounding us such as CO emissions, the accumulation of large amounts of plastic, and the depletion of energy resources such as oil.
View Article and Find Full Text PDFWe have studied the stiffness of myofilament lattice in sarcomeres in the pre-force generating state, which was realized by a relaxing reagent, BDM (butane dione monoxime). First, the radial stiffness for the overlap regions of sarcomeres of isolated single myofibrils was estimated from the resulting decreases in diameter by osmotic pressure applied with the addition of Dextran. Then, the radial stiffness was also estimated from force-distance curve measurements with AFM technology.
View Article and Find Full Text PDFDuring their chemotactic swimming toward eggs, sperm cells detect their species-specific chemoattractant and sense concentration gradients by unknown mechanisms. After sensing the attractant, sperm cells commonly demonstrate a series of responses involving different swimming patterns by changing flagellar beats, gradually approaching a swimming path toward the eggs, which is the source of chemoattractants. Shiba et al.
View Article and Find Full Text PDFMany studies have been conducted to elucidate the relationship between energy metabolic pathways (glycolysis and respiration) and flagellar motility in mammalian sperm, but the contribution of glycolysis to sperm motility has not yet been fully elucidated. In the present study, we performed detailed analysis of mouse sperm flagellar motility for further understanding of the contribution of glycolysis to mammalian sperm motility. Mouse sperm maintained vigorous motility in the presence of substrates either for glycolysis or for respiration.
View Article and Find Full Text PDFThe radial stability of the actomyosin filament lattice in skeletal myofibrils was examined by using atomic force microscopy. The diameter and the radial stiffness of the A-band region were examined based on force-distance curves obtained for single myofibrils adsorbed onto cover slips and compressed with the tip of a cantilever and with the Dextran treatment. The results obtained indicated that the A-band is composed of a couple of stiffness components having a rigid core-like component.
View Article and Find Full Text PDFWe report the first X-ray diffraction patterns recorded from single axonemes of eukaryotic flagella with a diameter of only <0.2 μm, by using the technique of cryomicrodiffraction. A spermatozoon isolated from the testis of a fruit fly, Drosophila melanogaster, either intact or demembranated, was mounted straight in a glass capillary, quickly frozen and its 800-μm segment was irradiated end-on with intense synchrotron radiation X-ray microbeams (diameter, ~2 μm) at 74 K.
View Article and Find Full Text PDFX-ray fiber diffraction is one of the most useful methods for examining the structural details of live biological filaments under physiological conditions. To investigate biologically active or labile materials, it is crucial to finish fiber alignment within seconds before diffraction analysis. However, the conventional methods, e.
View Article and Find Full Text PDF