J Chem Theory Comput
July 2024
Identifying local structural motifs and packing patterns of molecular solids is a challenging task for both simulation and experiment. We demonstrate two novel approaches to characterize local environments in different polymorphs of molecular crystals using learning models that employ either flexibly learned or handcrafted molecular representations. In the first case, we follow our earlier work on graph learning in molecular crystals, deploying an atomistic graph convolutional network combined with molecule-wise aggregation to enable per-molecule environmental classification.
View Article and Find Full Text PDF