Objective: The genetic basis underlying the pathophysiology of quasi-moyamoya disease (qMMD) is unclear. Herein, the authors aimed to comprehensively analyze genetic variants in qMMD and investigate their association with clinical phenotypes, focusing on RNF213 and other moyamoya angiopathy (MMA)-related genes.
Methods: The authors evaluated 14 consecutive cases of qMMD, whose underlying conditions included autoimmune disease, head irradiation, meningitis/pachymeningitis, and Turner syndrome, and 9 cases of hyperthyroidism-associated MMD (hMMD).
Introduction: Oral tumors necessitate a dependable computer-assisted pathological diagnosis system considering their rarity and diversity. A content-based image retrieval (CBIR) system using deep neural networks has been successfully devised for digital pathology. No CBIR system for oral pathology has been investigated because of the lack of an extensive image database and feature extractors tailored to oral pathology.
View Article and Find Full Text PDFThe stomach is an important digestive organ with various biological functions. However, because of the complexity of its cellular and glandular composition, its precise cellular biology has yet to be elucidated. In this study, we conducted single-cell RNA sequencing (scRNA-seq) and subcellular-level spatial transcriptomics analysis of the human stomach and constructed the largest dataset to date: a stomach encyclopedia.
View Article and Find Full Text PDFIn this People of Data, Cell Press Community Review Scientific Editor Leia Judge talks to lead author Dr. Daisuke Komura and Principal Investigator Prof. Shumpei Ishikawa about their paper "Restaining-based annotation for cancer histology segmentation to overcome annotation-related limitations among pathologists," which was published in the February issue of , and their experiences with Cell Press Community Review.
View Article and Find Full Text PDFClinical implications of RNF213 genetic variants, other than p.Arg4810Lys, in moyamoya disease (MMD), remain unclear. This study aimed to investigate the association of RNF213 variants with clinical phenotypes in MMD.
View Article and Find Full Text PDFDeep texture representations (DTRs) produced from a bilinear convolutional neural network allow objective quantification of tumor histopathology images effectively. They can be used for various analyses, including visualization of morphological correlation between histology images, content-based image retrieval (CBIR), and supervised learning. This protocol describes the simplified workflow to analyze DTRs from data preparation, visualization of the histological profile, and CBIR analysis, to supervised learning model development to predict the profile from histological images.
View Article and Find Full Text PDFGastric cancer is among the most common malignancies worldwide, characterized by geographical, epidemiological and histological heterogeneity. Here, we report an extensive, multiancestral landscape of driver events in gastric cancer, involving 1,335 cases. Seventy-seven significantly mutated genes (SMGs) were identified, including ARHGAP5 and TRIM49C.
View Article and Find Full Text PDFNumerous cancer histopathology specimens have been collected and digitized over the past few decades. A comprehensive evaluation of the distribution of various cells in tumor tissue sections can provide valuable information for understanding cancer. Deep learning is suitable for achieving these goals; however, the collection of extensive, unbiased training data is hindered, thus limiting the production of accurate segmentation models.
View Article and Find Full Text PDFThe prognosis of gastric cancer (GC) is significantly affected by distant metastases and postoperative recurrences. Bone metastasis is one of the worst prognostic metastases in GC; however, its molecular mechanisms and predictive biomarkers remain elusive. In prostate and breast cancers, it has been reported that overexpression of Cadherin 11 (CDH11), a mesenchymal cell-cell contact factor, is known to be correlated with bone metastasis.
View Article and Find Full Text PDFLymphocytes consist of highly heterogeneous populations, each expressing a specific cell surface receptor corresponding to a particular antigen. Lymphocytes are both the cause and regulator of various diseases, including autoimmune/allergic diseases, lifestyle diseases, neurodegenerative diseases, and cancers. Recently, immune repertoire sequencing has attracted much attention because it helps obtain global profiles of the immune receptor sequences of infiltrating T and B cells in specimens.
View Article and Find Full Text PDFImportant roles of humoral tumor immunity are often pointed out; however, precise profiles of dominant antigens and developmental mechanisms remain elusive. We systematically investigated the humoral antigens of dominant intratumor immunoglobulin clones found in human cancers. We found that approximately half of the corresponding antigens were restricted to strongly and densely negatively charged polymers, resulting in simultaneous reactivities of the antibodies to both densely sulfated glycosaminoglycans (dsGAGs) and nucleic acids (NAs).
View Article and Find Full Text PDFOrbital cavernous venous malformation (OCVM) is a sporadic vascular anomaly of uncertain etiology characterized by abnormally dilated vascular channels. Here, we identify a somatic missense mutation, c.121G > T (p.
View Article and Find Full Text PDFEfficient molecular targeting therapies for most gastric cancers (GCs) are currently lacking, despite GC being one of the most frequent and often devastating malignancies worldwide. Thus, identification of novel therapeutic targets for GC is in high demand. Recent advancements of high-throughput nucleic acid synthesis methods combined with next-generation sequencing (NGS) platforms have made it feasible to conduct functional genomics screening using large-scale pooled lentiviral libraries aimed at discovering novel cancer therapeutic targets.
View Article and Find Full Text PDFCancer histological images contain rich biological and clinical information, but quantitative representation can be problematic and has prevented the direct comparison and accumulation of large-scale datasets. Here, we show successful universal encoding of cancer histology by deep texture representations (DTRs) produced by a bilinear convolutional neural network. DTR-based, unsupervised histological profiling, which captures the morphological diversity, is applied to cancer biopsies and reveals relationships between histologic characteristics and the response to immune checkpoint inhibitors (ICIs).
View Article and Find Full Text PDFThe patient-derived xenograft (PDX) model is a versatile tool used to study the tumor microenvironment (TME). However, limited studies have described multi-tumor PDX screening strategies to detect hub regulators during cancer-stroma interaction. Transcriptomes of cancer (human) and stroma (mouse) components of 70 PDX samples comprising 9 distinctive tumor types were analyzed in this study.
View Article and Find Full Text PDFSummary: Here, we present Viola, a Python package that provides structural variant (SV; large scale genome DNA variations that can result in disease, e.g. cancer) signature analytical functions and utilities for custom SV classification, merging multi-SV-caller output files and SV annotation.
View Article and Find Full Text PDFBackground: Schwannomas are neoplasms that typically arise from the myelin sheath of peripheral nerves and rarely originate within the brain parenchyma. Some case reports present schwannomas arising from the brainstem, but regrowth of the tumor and the efficacy of postoperative irradiation have not been examined. In addition, the genetic background of schwannomas arising from the brainstem has not been investigated.
View Article and Find Full Text PDFBackground: There is a need for a model of diffuse-type gastric cancer that captures the features of the disease, facilitates the study of its mechanisms, and aids the development of potential therapies. One such model may be Cdh1 and Trp53 double conditional knockout (DCKO) mice, which have histopathological features similar to those of human diffuse-type gastric cancer. However, a genomic profile of this mouse model has yet to be completed.
View Article and Find Full Text PDFInfection with CagA-producing Helicobacter pylori plays a causative role in the development of gastric cancer. Upon delivery into gastric epithelial cells, CagA deregulates prooncogenic phosphatase SHP2 while inhibiting polarity-regulating kinase PAR1b through complex formation. Here, we show that CagA/PAR1b interaction subverts nuclear translocation of BRCA1 by inhibiting PAR1b-mediated BRCA1 phosphorylation.
View Article and Find Full Text PDF