Publications by authors named "Daisuke Kamiya"

Fibrodysplasia ossificans progressiva (FOP) is a rare genetic disorder presenting with progressive heterotopic ossification (HO) in soft tissues. Early-stage FOP is characterized by recurrent episodes of painful tissue swelling (flare-ups), with numerous proliferation-activated mesenchymal stromal cells (MSCs) subsequently causing HO. However, the mechanisms underlying flare-up progression remain unclear.

View Article and Find Full Text PDF
Article Synopsis
  • * They developed matrix-rich cartilage spheroids through a step-by-step differentiation process, utilizing specific growth factors and small molecules, including a compound called TD-198946, to enhance cartilage formation without signs of dedifferentiation.
  • * These cartilage spheroids have potential applications in biofabrication for creating larger cartilage tissues, offering a promising new approach for effective cartilage repair in regenerative medicine.
View Article and Find Full Text PDF

The use of induced mesenchymal stem/stromal cells (iMSCs) derived from human induced pluripotent stem cells (hiPSCs) in regenerative medicine involves the risk of teratoma formation due to hiPSCs contamination in iMSCs. Therefore, eradicating the remaining undifferentiated hiPSCs is crucial for the effectiveness of the strategy. The present study demonstrates the Brequinar (BRQ)-induced inhibition of dihydroorotate dehydrogenase (DHODH), a key enzyme in pyrimidine biosynthesis, selectively induces apoptosis, cell cycle arrest, and differentiation; furthermore, it promotes transcriptional changes and prevents the growth of 3-dimensional hiPSC aggregates.

View Article and Find Full Text PDF

Mesenchymal stem/stromal cells (MSCs) are adult multipotent stem cells. Here, we induced MSCs from human induced pluripotent stem cells (iPSCs) via a neural crest cell (NCC) lineage under xeno-free conditions and evaluated their in vivo functions. We modified a previous MSC induction method to work under xeno-free conditions.

View Article and Find Full Text PDF

Human induced pluripotent stem cells (iPSCs) can differentiate into multiple cell types and are utilized for research on human development and regenerative medicine. Here, we report the establishment of human GAPDH knock-in reporter iPSC lines (GAPDH-tdT1 and 2), via CRISPR/Cas9-mediated homologous recombination, that stably express tdTomato as a constitutive cell label in both iPSCs and their differentiated derivatives. These cell lines will provide useful tools to trace cell locations and fates in 2D cultures and 3D organoids and will facilitate in vivo experiments.

View Article and Find Full Text PDF

SOX10 (SRY-box transcription factor 10) is not only a definitive molecular marker of neural crest cells (NCCs) but also an essential transcription factor for the differentiation of NCCs in vertebrate embryogenesis. Here, we report the establishment of a human SOX10 knock-in reporter iPSC line (SOX10-tdT) by CRISPR/Cas9-mediated homologous recombination, in which the expression of SOX10 can be monitored as tdTomato fluorescence. This iPSC line can provide a useful tool to model the differentiation process of human NCCs in vitro.

View Article and Find Full Text PDF

Although autologous nerve grafting is widely accepted as the gold standard treatment for segmental nerve defects, harvesting autologous nerves is highly invasive and leads to functional loss of the ablated part. In response, artificial nerve conduits made of artificial materials have been reported, but the efficacy of the nerve regeneration still needs improvement. The purpose of this study is to investigate the efficacy and mechanism of the Bio three-dimensional (3D) conduit composed of xeno-free human induced pluripotent stem cell-derived mesenchymal stem cells (iMSCs).

View Article and Find Full Text PDF

The neural fate is generally considered to be the intrinsic direction of embryonic stem (ES) cell differentiation. However, little is known about the intracellular mechanism that leads undifferentiated cells to adopt the neural fate in the absence of extrinsic inductive signals. Here we show that the zinc-finger nuclear protein Zfp521 is essential and sufficient for driving the intrinsic neural differentiation of mouse ES cells.

View Article and Find Full Text PDF

During gastrulation of the amphibian embryo, specification of the three germ layers, endo-, ecto-, and mesoderm, is regulated by maternal and zygotic mechanisms. Although it is known that mesoderm specification requires the cooperation between TGF-beta signaling and p53 activity and requires maternal factors, essential zygotic factors have been elusive. Here, we report that the Zn-finger protein XFDL156 is an ectodermal, zygotic factor that suppresses mesodermal differentiation.

View Article and Find Full Text PDF

Poor survival of human embryonic stem (hES) cells after cell dissociation is an obstacle to research, hindering manipulations such as subcloning. Here we show that application of a selective Rho-associated kinase (ROCK) inhibitor, Y-27632, to hES cells markedly diminishes dissociation-induced apoptosis, increases cloning efficiency (from approximately 1% to approximately 27%) and facilitates subcloning after gene transfer. Furthermore, dissociated hES cells treated with Y-27632 are protected from apoptosis even in serum-free suspension (SFEB) culture and form floating aggregates.

View Article and Find Full Text PDF

We report directed differentiaion of retinal precursors in vitro from mouse ES cells. Six3+ rostral brain progenitors are generated by culturing ES cells under serum-free suspension conditions (SFEB culture) in the presence of Wnt and Nodal antagonists (Dkk1 and LeftyA), and subsequently steered to differentiate into Rx+ cells (16%) by treatment with activin and serum. Consistent with the characteristics of early neural retinal precursors, the induced Rx+ cells coexpress Pax6 and the mitotic marker Ki67, but not Nestin.

View Article and Find Full Text PDF

We demonstrate directed differentiation of telencephalic precursors from mouse embryonic stem (ES) cells using optimized serum-free suspension culture (SFEB culture). Treatment with Wnt and Nodal antagonists (Dkk1 and LeftyA) during the first 5 d of SFEB culture causes nearly selective neural differentiation in ES cells ( approximately 90%). In the presence of Dkk1, with or without LeftyA, SFEB induces efficient generation ( approximately 35%) of cells expressing telencephalic marker Bf1.

View Article and Find Full Text PDF

Suppression of resistance to anticancer drugs by COTC of glyoxalase I (GloI) inhibitor targeting intracellular glutathione (GSH) and GloI was studied. Depletion of the cellular GSH content and inhibition of GloI by COTC increased chemotherapy-mediated apoptosis in apoptosis-resistant pancreatic adenocarcinoma AsPC-1 cells.

View Article and Find Full Text PDF