Publications by authors named "Daisuke Imamura"

The Bacillus subtilis spore is composed of a core, containing chromosomal DNA, surrounded by a cortex layer made of peptidoglycan, and a coat composed of concentric proteinaceous layers. A polysaccharide layer is added to the spore surface, and likely anchored to the crust, the coat outermost layer. However, the identity of the coat protein(s) to which the spore polysaccharides (SPS) are attached is uncertain.

View Article and Find Full Text PDF

Site-specific recombination (SSR) systems are employed in many genetic mobile elements, including temperate phages, for their integration and excision. Recently, they have also been used as tools for applications in fields ranging from basic to synthetic biology. SPβ is a temperate phage of the Siphoviridae family found in the laboratory standard Bacillus subtilis strain 168.

View Article and Find Full Text PDF

Cholera, an acute diarrheal disease, is caused by pathogenic strains of Vibrio cholerae generated by the lysogenization of the filamentous cholera toxin phage CTXΦ. Although CTXΦ phage in the classical biotype are usually integrated solitarily or with a truncated copy, those in El Tor biotypes are generally found in tandem and/or with related genetic elements. Due to this structural difference in the CTXΦ prophage array, the prophage in the classical biotype strains does not yield extrachromosomal CTXΦ DNA and does not produce virions, whereas the El Tor biotype strains can replicate the CTXΦ genome and secrete infectious CTXΦ phage particles.

View Article and Find Full Text PDF

Antimicrobial peptides play an important role in host defense against Generally, the O1 classical biotype is polymyxin B (PB) sensitive and El Tor is relatively resistant. Detection of classical biotype traits like the production of classical cholera toxin and PB sensitivity in El Tor strains has been reported in recent years, including in the devastating Yemen cholera outbreak during 2016-2018. To investigate the factor(s) responsible for the shift in the trend of sensitivity to PB, we studied the two-component system encoded by , regulating the lipid A modification of El Tor vibrios, and found that only contains a single nucleotide polymorphism (SNP) in recently emerged PB-sensitive strains.

View Article and Find Full Text PDF

Site-specific recombination (SSR) systems are employed for transfer of mobile genetic elements (MGEs), such as lysogenic phages and integrative conjugative elements (ICEs). SSR between attP/I and attB sites is mediated by an integrase (Int) and a recombination directionality factor (RDF). The genome of Bacillus subtilis 168 contains SPβ, an active prophage, skin, a defective prophage, and ICEBs1, an integrative conjugative element.

View Article and Find Full Text PDF

Polysaccharides (PS) decorate the surface of dormant endospores (spores). In the model organism for sporulation, , the composition of the spore PS is not known in detail. Here, we have assessed how PS synthesis enzymes produced during the late stages of sporulation affect spore surface properties.

View Article and Find Full Text PDF

Rotavirus A (RVA) is the predominant etiological agent of acute gastroenteritis in young children worldwide. Recently, unusual G9P[4] rotavirus strains emerged with high prevalence in many countries. Such intergenogroup reassortant strains highlight the ongoing spread of unusual rotavirus strains throughout Asia.

View Article and Find Full Text PDF

Cholera is an acute diarrheal disease and a major public health problem in many developing countries in Asia, Africa, and Latin America. Since the Bay of Bengal is considered the epicenter for the seventh cholera pandemic, it is important to understand the genetic dynamism of Vibrio cholerae from Kolkata, as a representative of the Bengal region. We analyzed whole genome sequence data of V.

View Article and Find Full Text PDF

In developed countries including Japan, malignant tumor (cancer), heart disease and cerebral apoplexy are major causes of death, but infectious diseases are still responsible for a high number of deaths in developing countries, especially among children aged less than 5 years. World Health Statistics published by WHO reports a high percentage of mortality from infectious diseases in children, and many of these diseases may be subject to transmission across borders and could possibly invade Japan.  Given this situation, the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan initiated Phase I of the Program of Founding Research Centers for Emerging and Reemerging Infectious Disease, which ran from FY 2005 to 2009, and involved 8 Japanese universities and 2 research centers.

View Article and Find Full Text PDF

Many bacterial species are known to become viable but nonculturable (VBNC) under conditions that are unsuitable for growth. In this study, the requirements for resuscitation of VBNC-state Vibrio cholerae cells were found to change over time. Although VBNC cells could initially be converted to culturable by treatment with catalase or HT-29 cell extract, they subsequently entered a state that was not convertible to culturable by these factors.

View Article and Find Full Text PDF

The Gram-positive bacterium Bacillus subtilis forms spores when conditions are unsuitable for growth. The spores are encased in a multilayered shell that includes a cortex and a spore coat, and remain viable for long periods in the harsh environment. In the present article, recent progress in our understanding of the outer structure of B.

View Article and Find Full Text PDF

Two small genes named sscA (previously yhzE) and orf-62, located in the prsA-yhaK intergenic region of the Bacillus subtilis genome, were transcribed by SigK and GerE in the mother cells during the later stages of sporulation. The SscA-FLAG fusion protein was produced from T(5) of sporulation and incorporated into mature spores. sscA mutant spores exhibited poor germination, and Tricine-SDS-PAGE analysis showed that the coat protein profile of the mutant differed from that of the wild type.

View Article and Find Full Text PDF

To investigate the outermost structure of the Bacillus subtilis spore, we analyzed the accessibility of antibodies to proteins on spores of B. subtilis. Anti-green fluorescent protein (GFP) antibodies efficiently accessed GFP fused to CgeA or CotZ, which were previously assigned to the outermost layer termed the spore crust.

View Article and Find Full Text PDF

SpoIIGA is a novel type of membrane-associated aspartic protease that responds to a signal from the forespore by cleaving Pro-σ(E) in the mother cell during sporulation of Bacillus subtilis. Very little is known about how SpoIIGA recognizes Pro-σ(E). By co-expressing proteins in Escherichia coli, it was shown that charge reversal substitutions for acidic residues 24 and 25 of Pro-σ(E), and for basic residues 245 and 284 of SpoIIGA, impaired cleavage.

View Article and Find Full Text PDF

Bacterial spores are encased in a multilayered proteinaceous shell known as the coat. In Bacillus subtilis, over 50 proteins are involved in spore coat assembly but the locations of these proteins in the spore coat are poorly understood. Here, we describe methods to estimate the positions of protein fusions to fluorescent proteins in the spore coat by using fluorescence microscopy.

View Article and Find Full Text PDF

The yeeK gene of Bacillus subtilis is predicted to encode a protein of 145 amino acids composed of 28% glycine, 23% histidine, and 12% tyrosine residues. Previous studies were unable to detect YeeK in wild-type spores; however, the 18-kDa YeeK polypeptide has been identified in yabG mutant spores. In this study, we analyze the expression and localization of YeeK to explore the relationship between YeeK and YabG.

View Article and Find Full Text PDF

The bacterium Bacillus subtilis undergoes endospore formation in response to starvation. sigma factors play a key role in spatiotemporal regulation of gene expression during development. Activation of sigma factors is coordinated by signal transduction between the forespore and the mother cell.

View Article and Find Full Text PDF

Endospore formation by Bacillus subtilis involves three differentiating cell types, the predivisional cell, the mother cell, and the forespore. Here we report the program of gene expression in the forespore, which is governed by the RNA polymerase sigma factors sigma(F) and sigma(G) and the DNA-binding proteins RsfA and SpoVT. The sigma(F) factor turns on about 48 genes, including the gene for RsfA, which represses a gene in the sigma(F) regulon, and the gene for sigma(G).

View Article and Find Full Text PDF

We isolated a novel protease that converts plasminogen to angiostatin-like fragments (BL-angiostatins) from a culture of Bacillus megaterium A9542 through a single-step chromatography on CM-cellulose. The protease, designated bacillolysin MA (BL-MA), belongs to a family of neutral metalloproteinases based on the nucleotide sequence of its gene. At an enzyme:substrate ratio of 1:540, BL-MA cleaved human plasminogen mainly at Ser441-Val442 to form BL-angiostatin and miniplasminogen with a K(m) of 3.

View Article and Find Full Text PDF

It is well known that the ykvU-ykvV operon is under the regulation of the sigma(E)-associated RNA polymerase (Esigma(E)). In our study, we observed that ykvV is transcribed together with the upstream ykvU gene by Esigma(E) in the mother cell and monocistronically under Esigma(G) control in the forespore. Interestingly, alternatively expressed ykvV in either the forespore or the mother cell increased the sporulation efficiency in the ykvV background.

View Article and Find Full Text PDF

The sn-1,2-diacylglycerol kinase homologue gene, dgkA, is a sporulation gene indispensable for the maintenance of spore stability and viability in Bacillus subtilis. After 6 h of growth in resuspension medium, the endospore morphology of the dgkA mutant by standard phase-contrast microscopy was normal; however, after 9 h, the endospores appeared mostly dark by phase-contrast microscopy, suggesting a defect in the spores. Moreover, electron microscopic studies revealed an abnormal cortex structure in mutant endospores 6 h after the onset of sporulation, an indication of cortex degeneration.

View Article and Find Full Text PDF