Publications by authors named "Daisuke Funabashi"

Purpose: Exercise benefits the body and mind, but its weight loss effect is less than generally expected. Although this phenomenon is likely due to an exercise intensity-dependent decrease in non-exercise physical activity (NEPA), resulting in a decrease in non-exercise activity thermogenesis, the underlying mechanisms and effects of exercise intensity remain unknown. Here we show that acute vigorous exercise decreases subsequent NEPA and body temperature (BT) in association with body weight gain.

View Article and Find Full Text PDF

Introduction: Environmental enrichment (EE) improves various health outcomes, such as hippocampal neurogenesis, in rodents, which is thought to be caused, in part, by increased physical activity. However, the specific effect of each enrichment component, such as enlarged housing spaces and increased spatial complexity with a variety of objects, on physical activity remains unclear because of methodological limitations in measuring physical activity. We aimed to examine whether enlarged housing spaces and increased spatial complexity increase physical activity in mice using a body-implantable actimeter.

View Article and Find Full Text PDF

The effects of exercise on the hippocampus depend on exercise conditions. Exercise intensity is thought to be a dominant factor that influences the effects of exercise on the hippocampus; however, it is uncertain whether the type of exercise influences its effectiveness. This study investigated whether the effect of an acute bout of exercise on hippocampal neuronal activation differs between two different types of exercise: treadmill and rotarod exercise.

View Article and Find Full Text PDF

New Findings: What is the central question of this study? It is generally recognized that social isolation is associated with physical inactivity, but is social isolation a direct determinant of decreased physical activity? What is the main finding and its importance? We conducted a within-subjects experiment with the aid of a body-implantable actimeter. Our results clearly demonstrated that social isolation decreased home-cage activity in mice. This might have resulted from increased immobility and decreased vigorous activity, suggesting that avoidance of social isolation is important to prevention of physical inactivity.

View Article and Find Full Text PDF