Background: Seminal vesiculitis is a common inflammation in the male genital tract. Etiologically, microbial infection and non-infectious factors can be responsible for seminal vesiculitis. The pathogenic triggers and mechanisms underlying non-infectious seminal vesiculitis remain unclear.
View Article and Find Full Text PDFThe mammalian testis adopts an immune privileged environment to protect male germ cells from adverse autoimmune reaction. The testicular immune privileged status can be also hijacked by various microbial pathogens as a sanctuary to escape systemic immune surveillance. In particular, several viruses have a tropism for the testis.
View Article and Find Full Text PDFJ Reprod Immunol
August 2022
The mammalian testis requires a highly organized microenvironment for the execution of its main functions, sperm production and testosterone synthesis. The testis possesses an immunoprivileged status essential for the protection of immunogenic male germ cells from detrimental immune responses. To counteract microbial infections, the tissue-specific cells are well equipped with innate defense machineries, termed pattern recognition receptors (PRRs), that can initiate innate immune responses.
View Article and Find Full Text PDFMammalian spermatogenesis is a carefully orchestrated male germ cell differentiation process by which spermatogonia differentiate to spermatozoa in the testis. A highly organized testicular microenvironment is therefore necessary to support spermatogenesis. Regarding immunologic aspects, the testis adapts a specialized immune environment for the protection of male germ cells and testicular functions.
View Article and Find Full Text PDFThe human testis can be infected by a large number of RNA and DNA viruses. While various RNA virus infections may induce orchitis and impair testicular functions, DNA virus infection rarely affects the testis. Mechanisms underlying the differential effects of RNA and DNA viral infections on the testis remain unclear.
View Article and Find Full Text PDFThree major pathogenic states of the prostate, including benign prostatic hyperplasia, prostate cancer, and prostatitis, are related to the local inflammation. However, the mechanisms underlying the initiation of prostate inflammation remain largely unknown. Given that the innate immune responses of the tissue-specific cells to microbial infection or autoantigens contribute to local inflammation, this study focused on pattern recognition receptor (PRR)-initiated innate immune responses in mouse prostatic epithelial cells (PECs).
View Article and Find Full Text PDFThe causative agent of mumps is a single-stranded, non-segmented, negative sense RNA virus belonging to the family. Besides the classic symptom of painfully swollen parotid salivary glands (parotitis) in mumps virus (MuV)-infected men, orchitis is the most common form of extra-salivary gland inflammation. Mumps orchitis frequently occurs in young adult men, and leads to pain and swelling of the testis.
View Article and Find Full Text PDFSeveral studies have demonstrated that Zika virus (ZIKV) damages testis and leads to infertility in mice; however, the infection in the epididymis, another important organ of male reproductive health, has gained less attention. Previously, we detected lesions in the epididymis in interferon type I and II receptor knockout male mice during ZIKV infection. Herein, the pathogenesis of ZIKV in the epididymis was further assessed in the infected mice after footpad inoculation.
View Article and Find Full Text PDFThe mumps virus (MuV) causes epidemic parotitis. MuV also frequently infects the testis and induces orchitis, an important etiological factor contributing to male infertility. However, mechanisms underlying MuV infection of the testis remain unknown.
View Article and Find Full Text PDFJapanese encephalitis virus (JEV) is a flavivirus that causes Japanese encephalitis (JE), which has an unclear pathogenesis. Despite vaccination, thousands of deaths attributed to JE are reported annually. In this study, we report that mice deficient for Axl, a receptor tyrosine kinase that plays multiple roles in flaviviral infection, displayed greater mortality upon JEV infection.
View Article and Find Full Text PDFEpididymitis can be caused by infectious and noninfectious etiological factors. While microbial infections are responsible for infectious epididymitis, the etiological factors contributing to noninfectious epididymitis remain to be defined. The present study demonstrated that damaged male germ cells (DMGCs) induce epididymitis in mice.
View Article and Find Full Text PDFMumps virus (MuV) has high tropism to the testis and may lead to male infertility. Sertoli cells are the major targets of MuV infection. However, the mechanisms by which MuV infection impairs male fertility and Sertoli cell function remain unclear.
View Article and Find Full Text PDFThe seminal vesicles can be infected by microorganisms, thereby resulting in vesiculitis and impairment in male fertility. Innate immune responses in seminal vesicles cells to microbial infections, which facilitate vesiculitis, have yet to be investigated. The present study aims to elucidate pattern recognition receptor-mediated innate immune responses in seminal vesicles epithelial cells.
View Article and Find Full Text PDFThe detrimental effects of Zika virus (ZIKV) infection on mouse testicular functions have reminded a viral threat to male fertility. A broad range of virus families has tropism for male reproductive system, particularly the testes. Certain virus types of these viruses, such as mumps virus and human immunodeficiency virus (HIV), may severely damage the testes and consequently lead to male infertility.
View Article and Find Full Text PDFSystemic inflammation may impair male fertility, and its underlying mechanisms remain poorly understood. The present study investigates the effect of lipopolysaccharide (LPS)-induced systemic inflammation on the testis and epididymis in mice. Intraperitoneal injection of LPS significantly impaired testicular functions, including testosterone production, spermatogenesis, and blood-testis barrier permeability.
View Article and Find Full Text PDFThe PDF and HTML versions of the article have been updated to include the Creative Commons Attribution 4.0 International License information.
View Article and Find Full Text PDFMumps virus (MuV) infection usually results in germ cell degeneration in the testis, which is an etiological factor for male infertility. However, the mechanisms by which MuV infection damages male germ cells remain unclear. The present study showed that C-X-C motif chemokine ligand 10 (CXCL10) is produced by mouse Sertoli cells in response to MuV infection, which induces germ cell apoptosis through the activation of caspase-3.
View Article and Find Full Text PDFDuring spermatogenesis, immature spermatocytes traverse the blood-testis barrier (BTB) and enter the apical apartment of seminiferous epithelium for further development. This course involves extensive junction disassembly and reassembly at the BTB. P-glycoprotein is known to be coded by two genes in rodents, namely Abcb1a and Abcb1b.
View Article and Find Full Text PDFRecently, Zika virus (ZIKV) outbreak has been associated with a sharp increase in cases of Guillain-Barré syndrome and severe fetal abnormalities. However, the mechanism underlying the interaction of ZIKV with host cells is not yet clear. Axl, a receptor tyrosine kinase, is postulated as a receptor for ZIKV entry; however, its in vivo role during ZIKV infection and its impact on the outcome of the disease have not been fully characterized and evaluated.
View Article and Find Full Text PDFViral infections of the ovary may perturb ovarian functions. However, the mechanisms underlying innate immune responses in the ovary are poorly understood. The present study demonstrates that cytosolic viral DNA sensor signaling initiates the innate immune response in mouse ovarian granulosa cells and affects endocrine function.
View Article and Find Full Text PDFMumps virus (MuV) infection has high tropism to the testis and usually leads to orchitis, an etiological factor in male infertility. However, MuV replication in testicular cells and the cellular antiviral responses against MuV are not fully understood. The present study showed that MuV infected the majority of testicular cells, including Leydig cells (LC), testicular macrophages, Sertoli cells (SC), and male germ cells (GC).
View Article and Find Full Text PDF