The contamination by the toxin citrinin (CIT), produced by fungi, has been reported in agricultural foods and is known to be nephrotoxic to humans. In this study, we found that CIT could be effectively degraded by the oleaginous yeast Saitozyma podzolica zwy-2-3. Four genes encoding glycosyltransferases (GTs) in S.
View Article and Find Full Text PDFMicrobial oils have been of considerable interest as food additives and biofuel resources due to high lipid contents, but lipid accumulation of oleaginous microorganisms can be induced by environmental stresses, such as dissolved oxygen (DO), which limit large-scale lipid production. Here, DO stress gave rise to the endogenous nitric oxide (NO) level to mediate S-nitrosylation of SpAsg1, regulating the lipid accumulation in Saitozyma podzolica zwy-2-3. Notably, qRT-PCR, yeast one-hybrid, dual-luciferase reporter assays, and metabolomics analysis exhibited that overexpression of SpAsg1 promoted lipid synthesis by directly regulation of glucose metabolism, enhancing glucose uptake, ATP and NADPH contents under DO stress.
View Article and Find Full Text PDFQuorum sensing (QS) is a cellular communication mechanism in which bacteria secrete and recognize signaling molecules to regulate group behavior. Lipases provide energy for bacterial cell growth but it is unknown whether they influence nutrient-dependent QS by hydrolyzing substrate. A high-yield lipase-producing strain, Burkholderia pyrrocinia WZ10-3, was previously identified in our laboratory, but the composition of its crude enzymes was not elucidated.
View Article and Find Full Text PDFThe CCT (CO, COL and TOC1) gene family has been elucidated to be involved in the functional differentiation of the products in various plant species, but their specific mechanisms are poorly understood. In the present investigation, we conducted a genome-wide identification and phylogenetic analysis of CCT genes from microalgae to legumes. A total of 700 non-redundant members of the CCT gene family from 30 species were identified through a homology search.
View Article and Find Full Text PDFBackground: Global public health is seriously threatened by the escalating issue of antimicrobial resistance (AMR). Antimicrobial peptides (AMPs), pivotal components of the innate immune system, have emerged as a potent solution to AMR due to their therapeutic potential. Employing computational methodologies for the prompt recognition of these antimicrobial peptides indeed unlocks fresh perspectives, thereby potentially revolutionizing antimicrobial drug development.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
December 2024
Dunaliella salina is a high-quality industrial effector for carotenoid production. The mechanism by which red light regulates carotenoid synthesis is still unclear. In this study, a transcription factor of DsGATA1 with a distinct structure was discovered in D.
View Article and Find Full Text PDFIntroduction: is a rod-shaped aerobic Gram-negative bacteria with considerable genetic and metabolic diversity, which can beused for bioremediation and production applications, and has great biotechnology potential. However, there are few studies on the heavy metal resistance of the genus.
Methods: In this paper, the distribution, characteristics and evolution of heavy metal resistance genes in and the gene island of Tn7-like transposable element associated with heavy metal resistance genes in were studied by comparative genomic method based on the characteristics of heavy metal resistance.
Flavohemoglobins (Fhbs) are key enzymes involved in microbial nitrosative stress resistance and nitric oxide degradation. However, the roles of Fhbs in fungi remain largely unknown. In this study, SpFhb1 and SpFhb2, two flavohemoglobin-encoding genes in Saitozyma podzolica zwy2-3 were characterized.
View Article and Find Full Text PDFLignocellulose's hydrolysate, a significant renewable source, contains xylose and furfural, making it challenging for industrial production of oleaginous yeast. On xylose fermentation with furfural treatment, OE::DN7263 and OE::DN7661 increased lipid yield and furfural tolerance versus WT, while, which of OE::CreA were decreased owing to CreA regulating DN7263 and DN7661 negatively. OE::CreA generated reactive oxygen species (ROS) causing oxidative damage.
View Article and Find Full Text PDFLight-harvesting chlorophyll a/b-binding (LHC) superfamily proteins play a vital role in photosynthesis. Although the physiological and biochemical functions of LHC genes have been well-characterized, the structural evolution and functional differentiation of the products need to be further studied. In this paper, we report the genome-wide identification and phylogenetic analysis of LHC genes in photosynthetic organisms.
View Article and Find Full Text PDFJ Microbiol Biotechnol
December 2022
Carotenoids, which are natural pigments found abundantly in wide-ranging species, have diverse functions and high industrial potential. The carotenoid biosynthesis pathway is very complex and has multiple branches, while the accumulation of certain metabolites often affects other metabolites in this pathway. The gene that encodes lycopene cyclase was selected in this study to evaluate β-carotene production and the accumulation of β-carotene in the alga .
View Article and Find Full Text PDFBackground: In oleaginous yeast, nitrogen limitation is a critical parameter for lipid synthesis. GATA-family transcriptional factor GAT1, a member of the target of rapamycin (TOR) pathway and nitrogen catabolite repression (NCR), regulates nitrogen uptake and utilization. Therefore, it is significant to study the SpGAT1 regulatory mechanism of lipid metabolism for conversion of biomass to microbial oil in [Formula: see text] zwy-2-3.
View Article and Find Full Text PDFBackground: can produce glycerol under salt stress, and this production can quickly adapt to changes in external salt concentration. Notably, glycerol is an ideal energy source. In recent years, it has been reported that the mitogen-activated protein kinase cascade pathway plays an important role in regulating salt stress, and in DtMAPK can regulate glycerol synthesis under salt stress.
View Article and Find Full Text PDFProdigiosin is an important secondary metabolite produced by Serratia marcescens. It can help strains resist stresses from other microorganisms and environmental factors to achieve self-preservation. Prodigiosin is also a promising secondary metabolite due to its pharmacological characteristics.
View Article and Find Full Text PDFBackground: Anthocyanins are common substances with many agro-food industrial applications. However, anthocyanins are generally considered to be found only in natural plants. Our previous study isolated and purified the fungus Aspergillus sydowii H-1, which can produce purple pigments during fermentation.
View Article and Find Full Text PDFMicroorganisms and microbial products can be highly efficient in uptaking soluble and particulate forms of heavy metals, particularly from solutions. In this study, the removal efficiency, oxidative damage, antioxidant system, and the possible removal mechanisms were investigated in Rhodobacter (R.) sphaeroides SC01 under mercury (Hg), lead (Pb) and cadmium (Cd) stress.
View Article and Find Full Text PDFBacterial esterases and lipases, especially extremozymes attract increasing attention due to various advantages both in good properties and wide applications. In the present study, a cold-adapted, alkali-stable and highly salt-tolerant esterase (Est700) was cloned from Bacillus licheniformis, expressed and purified with a molecular mass of 25 kDa. The optimal temperature of Est700 was 30 °C, with 35% maximal activity retaining at 0 °C.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
February 2018
Biological method has been recognized as a low-cost and ecofriendly approach for removing heavy metals from aqueous wastes. In this study, the ability of five photosynthetic bacteria isolates (strains labeled SC01, HN02, SC05, JS01, and YN01) was examined for their ability to remove Cr from Cr-containing solutions. Furthermore, the possible removal mechanisms were elucidated by comparing chromium removal rates, antioxidant reaction, and accumulation of reactive oxygen species (ROS).
View Article and Find Full Text PDFThe extensive environmental adaptability of the genus Paenibacillus is related to the enormous diversity of its gene repertoires. Paenibacillus sp. SSG-1 has previously been reported, and its agar-degradation trait has attracted our attention.
View Article and Find Full Text PDFSeaweed is receiving an increasing amount of attention as a "sea vegetable". The microbiota of coastal populations may acquire seaweed associated enzymes through marine food. Several agarases have been found in non-marine environments; however, their origin is unknown.
View Article and Find Full Text PDFIntracellular α-amylase was a special glycoside hydrolase in the cytoplasm. We cloned and expressed an intracellular α-amylase, Amy, from Paenibacillus sp. SSG-1.
View Article and Find Full Text PDFThe endo-polygalacturonase gene (endo-pgaA) was cloned from DNA of Aspergillus niger SC323 using the cDNA synthesized by overlapping PCR, and successfully expressed in Saccharomyces cerevisiae EBY100 through fusing the α-factor signal peptide of yeast. The full-length cDNA consists of 1,113 bp and encodes a protein of 370 amino acids with a calculated molecular mass of 38.8 kDa.
View Article and Find Full Text PDFAgar is a polysaccharide extracted from the cell walls of some macro-algaes. Among the reported agarases, most of them come from marine environment. In order to better understand different sources of agarases, it is important to search new non-marine native ones.
View Article and Find Full Text PDFAgar is a polysaccharide polymer material, generally extracted from seaweed. Most agar degradation strains were isolated from seawater. In order to find new species resources and novel agarase from soil, an agar-degrading bacterium Paenibacillus sp.
View Article and Find Full Text PDF