Publications by authors named "Dainan Mao"

Low doses of antibiotics can trigger secondary metabolite biosynthesis in bacteria, but the underlying mechanisms are generally unknown. We sought to better understand this phenomenon by studying how the antibiotic trimethoprim activates the synthesis of the virulence factor malleilactone in Using transcriptomics, quantitative multiplexed proteomics, and primary metabolomics, we systematically mapped the changes induced by trimethoprim. Surprisingly, even subinhibitory doses of the antibiotic resulted in broad transcriptional and translational alterations, with ∼8.

View Article and Find Full Text PDF

Most natural product biosynthetic gene clusters that can be observed bioinformatically are silent. This insight has prompted the development of several methodologies for inducing their expression. One of the more recent methods, termed reporter-guided mutant selection (RGMS), entails creation of a library of mutants that is then screened for the desired phenotype via reporter gene expression.

View Article and Find Full Text PDF

has emerged as a model organism for investigating the production and regulation of diverse secondary metabolites. Most of the biosynthetic gene clusters encoded in are silent, motivating the development of new methods for accessing their products. In the current work, we add to the canon of available approaches using phenotype-guided transposon mutagenesis to characterize a silent biosynthetic gene cluster.

View Article and Find Full Text PDF

The explosion of microbial genome sequences has shown that bacteria harbor an immense, largely untapped potential for the biosynthesis of diverse natural products, which have traditionally served as an important source of pharmaceutical compounds. Most of the biosynthetic genes that can be detected bioinformatically are not, or only weakly, expressed under standard laboratory growth conditions. Herein we review three recent approaches that have been developed for inducing these so-called silent biosynthetic gene cluster: insertion of constitutively active promoters using CRISPR-Cas9, high-throughput elicitor screening for identification of small molecule inducers, and reporter-guided mutant selection for creation of overproducing strains.

View Article and Find Full Text PDF

Bacteria produce a diverse array of secondary metabolites that have been invaluable in the clinic and in research. These metabolites are synthesized by dedicated biosynthetic gene clusters (BGCs), which assemble architecturally complex molecules from simple building blocks. The majority of BGCs in a given bacterium are not expressed under normal laboratory growth conditions, and our understanding of how they are silenced is in its infancy.

View Article and Find Full Text PDF

While bacterial genomes typically contain numerous secondary metabolite biosynthetic gene clusters, only a small fraction of these are expressed at any given time. The remaining majority is inactive or silent, and methods that awaken them would greatly expand our repertoire of bioactive molecules. We recently devised a new approach for identifying inducers of silent gene clusters and proposed that the clinical antibiotic trimethoprim acted as a global activator of secondary metabolism in Burkholderia thailandensis.

View Article and Find Full Text PDF