Population changes of invasive species can go unnoticed long before population explosions, so long-term monitoring programs are needed to assess changes in population size. Although invasive populations of rose-ringed () and monk parakeets () are present worldwide, their current status and dynamics are mostly poorly known. Here, we provide a long-term population monitoring of both parakeet species established in a Mediterranean urban area.
View Article and Find Full Text PDFCertain traits of recipient environments, such as the availability of limiting resources, strongly determine the establishment success and spread of non-native species. These limitations may be overcome through behavioral plasticity, allowing them to exploit alternative resources. Here, we show how a secondary cavity nester bird, the rose-ringed parakeet , innovates its nesting behavior as a response to the shortage of tree cavities for nesting in its invasive range in Tenerife (Canary Islands).
View Article and Find Full Text PDFWhile most of the knowledge on invasive species focuses on their impacts, little is known about their potential positive effects on other species. Invasive ecosystem engineers can disrupt recipient environments; however, they may also facilitate access to novel resources for native species. The monk parakeet () is a worldwide invader and the only parrot that builds its own communal nests, which can be used by other species.
View Article and Find Full Text PDFPlant-animal interactions are key to sustaining whole communities and ecosystem function. However, their complexity may limit our understanding of the underlying mechanisms and the species involved. The ecological effects of epizoochory remain little known compared to other seed dispersal mechanisms given the few vectors identified.
View Article and Find Full Text PDFBackground: Non-native species are often introduced in cities, where they take advantage of microclimatic conditions, resources provided by humans, and competitor/predator release to establish and proliferate. However, native communities in the surrounding rural or natural areas usually halt their spread through biotic resistance, mainly via top-down regulative processes (predation pressure). Here, we show an unusual commensal interaction between exotic and native bird species that favours the spread of the former from urban to rural habitats.
View Article and Find Full Text PDFAnecdotic citations of food wasting have been described for parrots, but we lack a comprehensive knowledge about the extent of this behaviour, and its ecological and evolutionary implications. Here, we combine experimental and observational approaches to evaluate the spatial, temporal, typological and taxonomic extent of food wasting by parrots, to identify the ecological and evolutionary factors driving food wasting, and to assess the incidence of two ecological functions derived from food wasting, such as food facilitation to other animal species and secondary seed dispersal. We found that food wasting is a widespread behaviour found in all the studied parrot species.
View Article and Find Full Text PDFThe identification of effects of invasive species is challenging owing to their multifaceted impacts on native biota. Negative impacts are most often reflected in individual fitness rather than in population dynamics of native species and are less expected in low-biodiversity habitats, such as urban environments. We report the long-term effects of invasive rose-ringed parakeets on the largest known population of a threatened bat species, the greater noctule, located in an urban park.
View Article and Find Full Text PDFInvasive species can take advantage of resources unexploited by natives (opportunism hypothesis) or they can exploit the same resources but more aggressively or efficiently (competition hypothesis), thus impacting native species. However, invasive species tend to exploit anthropogenic habitats that are inefficiently used by natives such as urban environments. Focusing on the ring-necked parakeet (Psittacula krameri), one of the most invasive birds worldwide, we combined observations of interspecific aggressions, species-specific cavity-nest preferences and the spatial distribution of the native cavity-nesting vertebrate community to determine the invasion process as well as its potential impacts on native species in a Mediterranean city.
View Article and Find Full Text PDF