Pulmonary hypertension (PH) is caused by chronic hypoxia that induces the migration and proliferation of pulmonary arterial smooth muscle cells (PASMCs), eventually resulting in right heart failure. PH has been related to aberrant autophagy; however, the hidden mechanisms are still unclear. Approximately 40% East Asians, equivalent to 8% of the universal population, carry a mutation in Aldehyde dehydrogenase 2 (ALDH2), which leads to the aggregation of noxious reactive aldehydes and increases the propensity of several diseases.
View Article and Find Full Text PDFMacrophages play a vital role in cardiac repair following myocardial infarction (MI). An enriched environment (EE) is involved in the regulation of macrophage-related activities and disease progression; however, whether EE affects the phenotype and function of macrophages to improve postinfarction cardiac repair remains unknown. In this study, we found that EE improved cardiac function, decreased mortality, and ameliorated adverse ventricular remodeling in mice after MI, with these outcomes closely related to the increased survival of Ly6C macrophages and their CCR2MHCII subsets.
View Article and Find Full Text PDFBackground: Cardiac resident macrophages are self-maintaining and originate from embryonic hematopoiesis. After myocardial infarction, cardiac resident macrophages are responsible for the efficient clearance and degradation of apoptotic cardiomyocytes (efferocytosis). This process is required for inflammation resolution and tissue repair; however, the underlying molecular mechanisms remain unknown.
View Article and Find Full Text PDFBackground: To explore the source, the role and the specific mechanism of IL-35 and its downstream molecules in the development of pulmonary hypertension.
Methods: 8-10 weeks male mice were undergoing hypoxia combined with SU5416 (HySu) to establish a pulmonary hypertension (PH) model. The phenotype of PH mice was measured by immunohistochemistry and immunofluorescence staining.
Background: PCSK9 (proprotein convertase subtilisin/kexin 9), mainly secreted by the liver and released into the blood, elevates plasma low-density lipoprotein cholesterol by degrading low-density lipoprotein receptor. Pleiotropic effects of PCSK9 beyond lipid metabolism have been shown. However, the direct effects of PCSK9 on platelet activation and thrombosis, and the underlying mechanisms, as well, still remain unclear.
View Article and Find Full Text PDFRationale: Pulmonary arterial hypertension (PAH) is characterized by progressive pulmonary vascular remodeling, accompanied by varying degrees of perivascular inflammation. Niacin, a commonly used lipid-lowering drug, possesses vasodilating and proresolution effects by promoting the release of prostaglandin D (PGD). However, whether or not niacin confers protection against PAH pathogenesis is still unknown.
View Article and Find Full Text PDFObjective: Adipose-derived mesenchymal stem cells (ADSCs) offer great promise as cell therapy for ischaemic diseases. Due to their poor survival in the ischaemic environment, the therapeutic efficacy of ADSCs is still relatively low. Interleukin-11 (IL-11) has been shown to play a key role in promoting cell proliferation and protecting cells from oxidative stress injury.
View Article and Find Full Text PDFThis study aims to determine the effect of exercise on the cardiac function, metabolic profiles and related molecular mechanisms in mice with ischemic-induced heart failure (HF). HF was induced by myocardial infarction (MI) in C57BL6/N mice. Cardiac function and physical endurance were improved in HF mice after exercise.
View Article and Find Full Text PDFObjective: Abnormal proliferation and migration of vascular smooth muscle cells (VSMCs) are related to in-stent-restenosis (ISR) following percutaneous coronary intervention (PCI). Osteoprotegerin (OPG) has been implicated in various vascular diseases. However, the effects of OPG on ISR and the underlying mechanism remained elusive.
View Article and Find Full Text PDFVascular remodeling, including smooth muscle cell hypertrophy and proliferation, is the key pathological feature of pulmonary arterial hypertension (PAH). Prostaglandin I analogs (beraprost, iloprost, and treprostinil) are effective in the treatment of PAH. Of note, the clinically favorable effects of treprostinil in severe PAH may be attributable to concomitant activation of DP1 (D prostanoid receptor subtype 1).
View Article and Find Full Text PDFCardiac fibrosis is a common feature of various cardiovascular diseases. Previous studies showed that acetaldehyde dehydrogenase 2 (ALDH2) deficiency exacerbated pressure overload-induced heart failure. However, the role and mechanisms of cardiac fibrosis in this process remain largely unknown.
View Article and Find Full Text PDFExercise has long been recognized as a beneficial living style for cardiovascular health. It has been applied to be a central component of cardiac rehabilitation for patients with chronic heart failure (CHF), coronary heart disease (CHD), post-acute coronary syndrome (ACS) or primary percutaneous coronary intervention (PCI), post cardiac surgery or transplantation. Although the effect of exercise is multifactorial, in this review, we focus on the specific contribution of regular exercise on the heart and vascular system.
View Article and Find Full Text PDFBackground: Trimethylamine N-oxide (TMAO), a gut microbe-derived metabolite of dietary choline and other trimethylamine-containing nutrients, has been associated with poor prognosis in coronary heart disease. However, the role and underlying mechanisms of TMAO in the cardiac fibrosis after myocardial infarction (MI) remains unclear.
Methods: We used mouse MI models and primary cardiac fibroblasts cultures to study the role of TMAO in the heart and in cardiac fibroblasts.
Rationale: Targeting inflammation has been shown to provide clinical benefit in the field of cardiovascular diseases. Although manipulating regulatory T-cell function is an important goal of immunotherapy, the molecules that mediate their suppressive activity remain largely unknown. IL (interleukin)-35, an immunosuppressive cytokine mainly produced by regulatory T cells, is a novel member of the IL-12 family and is composed of an EBI3 (Epstein-Barr virus-induced gene 3) subunit and a p35 subunit.
View Article and Find Full Text PDFObjective- Macrophages participate in the pathogenesis of pulmonary arterial hypertension (PAH). Lgmn (Legumain), a newly discovered cysteine proteinase belonging to the C13 peptidase family, is primarily expressed in macrophages; however, its roles in PAH remain unknown. Approach and Results- Herein, Lgmn was upregulated in lung tissues of PAH mice subjected to hypoxia plus SU5416 and PAH rats challenged with monocrotaline.
View Article and Find Full Text PDFPulmonary arterial hypertension (PAH) is a life-threatening disease characterized by progressive pulmonary artery (PA) remodeling. T helper 2 cell (Th2) immune response is involved in PA remodeling during PAH progression. Here, we found that CRTH2 (chemoattractant receptor homologous molecule expressed on Th2 cell) expression was up-regulated in circulating CD3CD4 T cells in patients with idiopathic PAH and in rodent PAH models.
View Article and Find Full Text PDFAims: Extracellular matrix (ECM) proteins accumulation contributes to the progression of pulmonary arterial hypertension (PAH), a rare and fatal cardiovascular condition defined by high pulmonary arterial pressure, whether primary, idiopathic, or secondary to other causes. The receptor for advanced glycation end products (RAGE) is constitutively expressed in the lungs and plays an important role in ECM deposition. Nonetheless, the mechanisms by which RAGE mediates ECM deposition/formation in pulmonary arteries and its roles in PAH progression remain unclear.
View Article and Find Full Text PDFNiacin, as an antidyslipidemic drug, elicits a strong flushing response by release of prostaglandin (PG) D However, whether niacin is beneficial for inflammatory bowel disease (IBD) remains unclear. Here, we observed niacin administration-enhanced PGD production in colon tissues in dextran sulfate sodium (DSS)-challenged mice, and protected mice against DSS or 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis in D prostanoid receptor 1 (DP1)-dependent manner. Specific ablation of DP1 receptor in vascular endothelial cells, colonic epithelium, and myeloid cells augmented DSS/TNBS-induced colitis in mice through increasing vascular permeability, promoting apoptosis of epithelial cells, and stimulating pro-inflammatory cytokine secretion of macrophages, respectively.
View Article and Find Full Text PDFBackground: Pulmonary arterial remodeling characterized by increased vascular smooth muscle proliferation is commonly seen in life-threatening disease, pulmonary arterial hypertension (PAH). Clinical studies have suggested a correlation between osteoprotegerin serum levels and PAH severity. Here, we aimed to invhestigate vascular osteoprotegerin expression and its effects on pulmonary arterial smooth muscle cell proliferation in vitro and in vivo, as well as examine the signal transduction pathways mediating its activity.
View Article and Find Full Text PDFPulmonary hypertension (PH) is a rapidly progressive disease that eventually leads to right heart failure and death. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and its receptors (TRAIL-Rs) play an important role in the survival, migration, and proliferation of vascular smooth muscle cells. However, the association between serum TRAIL levels and PH is unknown.
View Article and Find Full Text PDF