Int J Impot Res
October 1999
The main penile or cavernous nerve is usually regarded as the most important vasodilator projection in the rat. Although other descending pathways have been described, there is little detailed information on their importance. In this present report, we provide topographic and quantitative information on lateral and ventral penile branches and examine the vasodilator fibers which join the pudendal neurovascular bundle.
View Article and Find Full Text PDFStimulation of the hypogastric nerve (HGN) often evokes bilateral responses in some pelvic organs. Retrograde labeling studies indicate that axons of postganglionic neurons often cross to the opposite side. However, there is little information available as to whether preganglionic fibers in the HGN have a contralateral projection to pelvic ganglia.
View Article and Find Full Text PDFJ Auton Nerv Syst
July 1997
Cytochrome oxidase staining was used as a marker of metabolic activity in neural elements in the rat major pelvic ganglion. Many neurons in the ventral pole of the ganglion have little cytochrome oxidase activity, while neurons in other locations show gradations in staining intensity. Punctate staining around principal neurons may represent preganglionic terminals, since it was greatly reduced after denervation of the ganglion.
View Article and Find Full Text PDFBackground: Multiple pathways have been proposed for the course of adrenergic fibers to the penis and, although it is generally recognized that the pudendal nerve (PudN) is the most important, there is little quantitative information available.
Methods: We used image analysis of catecholamine histofluorescence to quantify the effect of various nerve lesions on the adrenergic innervation of the rat penis. In addition to the denervation studies and as a direct test of whether penile adrenergic fibers traversed the pelvic plexus, penile neurons in the sympathetic chain were first labeled with a retrograde dye placed in the penis.
We have previously demonstrated that arterial, but not venous, vasodilatory responses to endothelium-derived nitric oxide (EDNO)-dependent agonists are enhanced in lungs isolated from rats with chronic hypoxia (CH)-induced pulmonary arterial hypertension. These data suggest that CH is associated with increased endothelial nitric oxide synthase (eNOS) activity within the pulmonary arterial vasculature. In addition, the correlation of increased pulmonary arterial pressure with selectively enhanced arterial responsiveness to EDNO-mediated agonists suggests that arterial hypertension, rather than hypoxia per se, is a contributing factor in this response.
View Article and Find Full Text PDFTo characterize further the injury response of autonomic ganglia, we have examined the effect of chronic denervation on perineuronal plexuses that are immunoreactive for vasoactive intestinal polypeptide (VIP) and tyrosine hydroxylase (TH) or that stain for nicotinamide adenine dinucleotide phosphate (NADPH) in the rat major pelvic ganglion, and their relationship to an identified sub-population of neurons in the ganglion (the penile neurons). Penile neurons contain VIP and NADPH diaphorase (NADPH-D) but lack TH. VIP-immunoreactive (VIP-IR) and TH-IR perineuronal plexuses (baskets) are rare in the rat major pelvic ganglion and those present are not associated with penile neurons.
View Article and Find Full Text PDFMicrosc Res Tech
October 1996
The pelvic plexus is an association of neurons that govern visceral tissues involved in eliminative and reproductive functions. It is the singular site in the autonomic nervous system where sympathetic and parasympathetic neurons occur in the same ganglia. Within the plexus, ganglia are not randomly positioned; sympathetic neurons tend to occur more ventrally while parasympathetic neurons are located more dorsally, both in accordance with the location of their target tissues and the entry point of their corresponding preganglionic nerve tracts.
View Article and Find Full Text PDFCell Tissue Res
October 1995
NADPH-diaphorase (NADPH-D) activity and immunoreactivity for neural and endothelial nitric oxide synthase (nNOS and eNOS, respectively) were used to investigate nitric oxide (NO) regulation of penile vasculature. Both the histochemical and immunohistochemical techniques for NOS showed that all smooth muscles regions of the penis (dorsal penile artery and vein, deep penile vessels, and cavernosal muscles) were richly innervated. The endothelium of penile arteries, deep dorsal penile vein, and select veins in the crura and shaft were also stained for NADPH-D and eNOS.
View Article and Find Full Text PDFJ Auton Nerv Syst
December 1993
Target organ responses to sympathetic nerve stimulation are altered following partial decentralization of the pelvic plexus in the rat. One possible explanation for the new responses is that nerve injury has led to a reorganization of synaptic connections within pelvic ganglia. Since one measure of synaptic influence is the occurrence of a pericellular plexus of varicose fibers around autonomic ganglion cells, the present study has used immunocytochemistry for enkephalin (ENK), a peptide present in nerve fibers in the pelvic plexus, to follow changes in the innervation of penile ganglionic neurons after interruption of preganglionic pathways.
View Article and Find Full Text PDFThe endogenous biosynthesis of nitric oxide (NO) is increased during gestation. To begin our investigation of a possible tissue source (or sources), we examined the placenta. We postulated that analogous to the endothelium of blood vessels, the syncytiotrophoblast (STr) cell layer that lines the intervillous blood space of the human placenta would express NO synthase.
View Article and Find Full Text PDFNeurosci Lett
September 1993
NADPH diaphorase histochemistry was used to determine whether the rat anoocccygeus (AC) and retractor penis (RP) muscles are innervated by nerves capable of synthesizing nitric oxide. In both tissues, muscle fascicles were enclosed by a varicose plexus of NADPH diaphorase positive (ND+) fibers. Perikarya of neurons on the surface of the AC muscle were also intensely stained for NADPH diaphorase.
View Article and Find Full Text PDFAs a basis for understanding the mechanism of erection in an animal model frequently used in research in reproductive biology, the angioarchitecture of the penis of the rat has been described using scanning electron microscopy. Study of the penile vasculature of the rat indicates that the corpora cavernosa penis and the corpus spongiosum are independent erectile tissues, each with its own arterial and venous vessels. The large vascular spaces and abundant smooth muscle of the penile crura are compatible with its role in regulating blood flow to more distal penile tissues.
View Article and Find Full Text PDFThe present study investigated the distribution of neuropeptide Y-immunoreactive fibers to the penis of the rat. In the corpora cavernosa penis, a dense plexus of fibers was associated with arteries, intrinsic cavernosal muscle, and veins, including the deep dorsal vein. In the corpus spongiosum, immunoreactive fibers were present around vascular smooth muscle and at the periphery of the acini of the paraurethral glands.
View Article and Find Full Text PDFThe ischiourethralis (IU), a striated perineal muscle presumed to be involved in sexual reflexes, was studied in the rat. The paired muscle arises from the penile crus and the penile bulb and unites in a raphe over the deep dorsal vein of the penis. Retrograde tracing studies show that the muscle is innervated by neurons in the dorsolateral nucleus of the lumbar spinal cord, a pudendal nerve motor nucleus which also innervates the ischiocavernosus muscle.
View Article and Find Full Text PDFJ Neurotrauma
April 1992
The initial severe contralateral impairment of motor function after unilateral damage to a portion of sensorimotor (SM) cortex lessens within a few weeks after injury. In this study, two hypotheses proposed to explain recovery of behavioral function after cortical injury were tested: (1) Intact cortex adjacent to the injury reorganizes to take over the function of the destroyed area. (2) Intact SM cortex adjacent or connected to the injured area undergoes a transient shock (diaschisis), and as this dissipates, some behavioral recovery occurs.
View Article and Find Full Text PDFThe innervation of the anococcygeus muscle of the rat was investigated with regard to the histochemical features of nerve fibers within the muscle and to the location of the postganglionic autonomic neurons which are the source of these fibers. Acetylcholinesterase-positive fibers and catecholaminergic fibers are abundant in the anococcygeus as well as the related retractor penis muscle. Neuronal somata, either between muscle bundles of the anococcygeus or in the connective tissue sheath, are also acetylcholinesterase-positive.
View Article and Find Full Text PDFPenile erection, a vascular event mediated by the autonomic nervous system, is often adversely affected by injury to the spinal cord. To further characterize the laboratory rat as an animal model of penile erection and to investigate erectile responses following neural injury, the present study has examined pressor penile responses in intact rats and in animals deprived of sacral parasympathetic outflow. Increases in penile pressure result from graded stimulation of postganglionic parasympathetic fibers.
View Article and Find Full Text PDFCholine acetyltransferase (ChAT), a biochemical marker of cholinergic neurons, was measured in the erectile tissue of intact rats and in rats in which postganglionic fibers from the pelvic plexus were interrupted. ChAT activity in the denervated erectile tissue fell by 56% compared to control tissues. Acetylcholinesterase positive (AChE+) nerves also fell by about 48%.
View Article and Find Full Text PDFAn understanding of the composition of the various nerves of the pelvic plexus is essential in the design of studies to explore the autonomic control of pelvic visceral tissues. As a correlate of this interest, the present study was designed to determine the composition of the main penile nerve in the pelvic plexus of the laboratory rat, an animal commonly used for studies of reproductive physiology. Retrograde tracing studies indicate that the main penile nerve contains neurons which project to the penile crura, the corpus spongiosum, and the bulbourethral glands.
View Article and Find Full Text PDFRecent studies have questioned the role of acetylcholine in the physiology of penile erectile tissue. The responsiveness of penile erectile tissue to acetylcholine would depend, in part, on the presence of cholinergic receptors on the smooth muscle. The specific binding of [3H]quinuclidinyl benzilate (QNB) to cholinergic receptors in sections of penile crura of the rat was analyzed by in vitro neurotransmitter autoradiography.
View Article and Find Full Text PDFJ Auton Pharmacol
December 1987
1. The mechanical response to drugs and to electrical stimulation of nerves was investigated in isolated strips of intrinsic smooth muscle from the corpora cavernosa penis of the rat. 2.
View Article and Find Full Text PDFThe presence of adrenergic innervation was investigated in four different vascular segments of the neotenic tiger salamander, Ambystoma tigrinum, by histofluorescent staining for catecholamines. The segments were the respiratory section of the gill, the branchial shunt vessels, a vascular plexus in the pulmonary artery, and the dorsal aorta. No adrenergic fibers were detected in the respiratory section of the gill or the pulmonary arterial plexus.
View Article and Find Full Text PDFSurgical interruption of the pelvic nerve elevated immunoreactive vasoactive intestinal polypeptide in the major pelvic ganglion of the rat. Two changes were noted: (i) varicose and smooth fibers appeared in the neuropil and (ii) a small number of ganglion cells became highly reactive for the polypeptide. A more proximal transection of preganglionic parasympathetic fibers, at their origin from spinal nerves, had no effect on vasoactive intestinal polypeptide immunoreactivity.
View Article and Find Full Text PDFRetrograde dye staining, combined with histochemical and immunohistochemical techniques, were used to characterize penile neurons in the major pelvic ganglion of the rat. Of the penile neurons 92% were immunoreactive for vasoactive intestinal polypeptide, while 95% of penile neurons stained intensely for acetylcholinesterase. None of the neurons were immunoreactive for tyrosine hydroxylase.
View Article and Find Full Text PDFRetrograde dye staining, enkephalin immunocytochemistry and nerve lesion paradigms were used to determine if penile neurons in the pelvic plexus are innervated by fibers in the hypogastric nerve. In the intact major pelvic ganglion of the rat, some 80% of penile neurons are enclosed by an enkephalin-positive fiber plexus. Following surgical interruption of the pelvic nerve, 20% of penile neurons were still surrounded by an enkephalin plexus.
View Article and Find Full Text PDF