We demonstrate spectral peak formation in a mode-locked solid-state laser that contains a gas cell inside the cavity. Symmetric spectral peaks appear in the course of sequential spectral shaping through resonant interaction with molecular rovibrational transitions and nonlinear phase modulation in the gain medium. The spectral peak formation is explained as that narrowband molecular emissions triggered by an impulsive rovibrational excitation are superposed on the broadband spectrum of the soliton pulse by constructive interference.
View Article and Find Full Text PDFWe demonstrate high-sensitivity vibrational absorption spectroscopy in the 2-micron wavelength range by using a mode-locked Cr:ZnS laser. Interferometric subtraction and multichannel detection across the broad laser spectrum realize simultaneous background-free detection of multiple vibrational modes over a spectral span of >380 cm. Importantly, we achieve detection of small absorbance on the order of 10, which is well below the detection limit of conventional absorption spectroscopy set by the detector dynamic range.
View Article and Find Full Text PDFWe developed a diode-pumped, mode-locked polycrystalline Cr:ZnS oscillator using single-walled carbon nanotubes as a saturable absorber. The oscillator exhibits self-start mode-locking operation, generating sub-100 fs pulses with an average power of 300 mW. We found a unique feature in which the intensity noise originating from relaxation oscillation is suppressed by inherent second harmonic generation in polycrystalline Cr:ZnS.
View Article and Find Full Text PDFAmid the increasing potential of ultrafast mid-infrared (mid-IR) laser sources based on transition metal doped chalcogenides such as Cr:ZnS, Cr:ZnSe, and Fe:ZnSe lasers, there is a need for direct and sensitive characterization of mid-IR mode-locked laser pulses that work in the nanojoule energy range. We developed a two-dimensional spectral shearing interferometry (2DSI) setup to successfully demonstrate the direct electric-field reconstruction of Cr:ZnS mode-locked laser pulses with a central wavelength of 2.3 µm, temporal duration of 30.
View Article and Find Full Text PDFBackground: In neurosurgery, it is important to use local hemostatic agents. We have explored a more powerful method of hemostasis by the combination of commercially available hemostatic agents with fibrin glue in the hopes of synergistic effects.
Method: A bleeding model was constructed by puncturing the rabbit posterior vena cava with a needle.
We study the saturable absorption properties of single-walled carbon nanotubes (SWCNTs) with a large diameter of 2.2 nm and the corresponding exciton resonance at a wavelength of 2.4 µm.
View Article and Find Full Text PDFWe develop a mode-locked Cr:ZnS polycrystalline laser using single-walled carbon nanotubes (SWCNTs) that have resonant absorption at the wavelength of 2.4 μm. The laser generates ultrashort pulses of 49 fs duration, a 2.
View Article and Find Full Text PDF