Publications by authors named "Daiki Fujimura"

The bones are a common site for metastasis arising from solid tumors such as breast and prostate cancer. Chemotherapy, including immunotherapy, is rarely curative. Radiotherapy with pain palliation can temporize bone metastases but is generally considered a short-term solution and retreatment is difficult.

View Article and Find Full Text PDF

Background: The differential diagnosis of neuropathic pain, especially discrimination between neuropathic pain caused by spinal canal stenosis (SCS) and neuropathic pain associated with causes other than SCS, is sometimes difficult; however, it is important for surgical application.

Methods: We established a reliable method for measuring lysophosphatidylcholine (LPC), a precursor of lysophosphatidic acids which are known as being pain initiators, using a liquid chromatography-tandem mass spectrometry method, and measured the LPC concentrations in the cerebrospinal fluid (CSF) in patients with SCS (SCS group; n = 76), patients with neuropathic pain caused by non-SCS diseases (Others group; n = 49), and control subjects without pain (control group; n = 92).

Results: Both within-run and between-run CV(%) were almost < 10 %, suggesting an enough performance for clinical introduction.

View Article and Find Full Text PDF

Near-infrared photoimmunotherapy (NIR-PIT) selectively kills tumor cells to which the photo-absorber dye IR700DX-conjugated antibodies are bound and induces a systemic anti-tumor immune response. NIR-PIT induces immunogenic cell death (ICD), releases damage-associated molecular patterns (DAMPs) molecules from dying tumor cells, and activates dendritic cells (DCs). However, it is unclear whether NIR-PIT affects migration of tumor-infiltrating (Ti)-DCs to draining lymph nodes (dLNs), where a systemic anti-tumor response is induced.

View Article and Find Full Text PDF

Background/aim: Near-infrared photoimmuno-therapy (NIR-PIT) is a newly approved cancer phototherapy. We aim to confirm whether a clinically approved camera for indocyanine green (ICG) could monitor IR700 fluorescence in real time during exposure to therapeutic NIR light.

Materials And Methods: An NIR camera, LIGHTVISION, designed to image ICG fluorescence, was used.

View Article and Find Full Text PDF

Near-infrared photoimmunotherapy (NIR-PIT) is a cell-specific cancer therapy that uses an antibody-photoabsorber (IRDye700DX, IR700) conjugate (APC) and NIR light. Intravenously injected APC binds the target cells, and subsequent NIR light exposure induces immunogenic cell death only in targeted cells. Panitumumab and cetuximab are antibodies that target human epidermal growth factor receptor (hEGFR) and are suitable for NIR-PIT.

View Article and Find Full Text PDF

Near-infrared photoimmunotherapy (NIR-PIT) is a new type of cancer treatment, which was recently approved in Japan for patients with inoperable head and neck cancer. NIR-PIT utilizes antibody-IRDye700DX (IR700) conjugates and NIR light at a wavelength of 690 nm. NIR light exposure leads to physicochemical changes in the antibody-IR700 conjugate cell receptor complex, inducing rapid necrotic cell death.

View Article and Find Full Text PDF

Near-infrared photoimmunotherapy (NIR-PIT) is a newly developed cancer treatment that uses antibody-IRDye700DX (IR700) conjugates and was recently approved in Japan for patients with inoperable head and neck cancer. Exposure of the tumor with NIR light at a wavelength of 690 nm leads to physicochemical changes in the antibody-IR700 conjugate-cell receptor complex, resulting in increased hydrophobicity and damage to the integrity of the cell membrane. However, it is important that the tumor be completely exposed to light during NIR-PIT, and thus, a method to provide real-time information on tumor location would help clinicians direct light more accurately.

View Article and Find Full Text PDF

Near infrared photoimmunotherapy (NIR-PIT) is a newly developed and highly selective cancer treatment that induces necrotic/immunogenic cell death. It employs a monoclonal antibody (mAb) conjugated to a photo-absorber dye, IRDye700DX, which is activated by NIR light. Tumor-targeting NIR-PIT is also at least partly mediated by a profound immune response against the tumor.

View Article and Find Full Text PDF

Near-infrared photoimmunotherapy (NIR-PIT), a newly developed cancer-cell-specific therapy, relies on a monoclonal antibody-photoabsorber conjugate (APC) and is based on a photoinduced ligand release reaction. Local exposure of the tumor to NIR light induces rapid immunogenic necrotic cell death. The molecular properties of APCs, including their stability and aggregation properties, have important implications for the long-term stability and shelf life.

View Article and Find Full Text PDF

Targeted near-infrared (NIR) fluorescence probes are playing a significant role in biomedical imaging because NIR penetrates deeper into tissues and is associated with reduced autofluorescence compared to visible light fluorescence probes. Long-wavelength emitting 4,4-difluoro-4-bora-3a,4a-diaza--indacene (BODIPY) is an attractive platform for synthesizing NIR fluorophores because of its high photostability, high molar absorption coefficient, and sharp absorption and emission spectra. However, its lipophilicity hampers the conjugation chemistry necessary to add targeting moieties.

View Article and Find Full Text PDF

Background: Near-infrared photoimmunotherapy (NIR-PIT) is a cancer therapy that causes an increase in tumor perfusion, a phenomenon termed the super-enhanced permeability and retention effect. Currently, in vivo treatment efficacy of NIR-PIT is observable days after treatment, but monitoring would be improved by more acute detection of intratumor change. Fluorescence imaging may detect increased tumor perfusion immediately after treatment.

View Article and Find Full Text PDF

Near-infrared photoimmunotherapy (NIR-PIT) is a newly developed and selective cancer treatment that induces necrotic and immunogenic cell death and utilizes a mAb conjugated to a photo-absorber dye, IR700DX, activated by NIR light. Although CD44 is a surface cancer marker associated with drug resistance, anti-CD44-IR700 NIR-PIT results in inhibited cell growth and prolonged survival in multiple tumor types. Meanwhile, CD25-targeted NIR-PIT has been reported to achieve selective and local depletion of FOXP3CD25CD4 regulatory T cells (Treg), which are primary immunosuppressive cells in the tumor microenvironment (TME), resulting in activation of local antitumor immunity.

View Article and Find Full Text PDF

Near-infrared photoimmunotherapy (NIR-PIT) is a molecularly targeted cancer phototherapy that is based on injecting a conjugate of a silicon-phthalocyanine derivative, IRdye 700DX (IR700), and a monoclonal antibody that targets an expressed antigen on the cancer cell surface. Subsequent local exposure to NIR light results in the rapid and highly selective immunogenic cell death of targeted cancer cells. Because many cancers grow in bones through which light does not penetrate well, the goal of this study was to determine if NIR-PIT can effectively treat cancers in bone.

View Article and Find Full Text PDF

Regulatory T (Treg) cells play a major role in immune suppression permitting tumors to evade immune surveillance. Depletion of intratumoral Treg cells can result in tumor regression. However, systemic depletion of Tregs may also induce autoimmune adverse events.

View Article and Find Full Text PDF

and fluorescence imaging-assisted surgery can aid in determining the margins of tumors during surgical resection. While a variety of fluorescent probes have been proposed for this task, small molecule enzyme-activatable fluorescent probes are ideal for this application. They are quickly activated at tumor sites and result in bright signal with little background, resulting in high sensitivity.

View Article and Find Full Text PDF

Near infrared (NIR) fluorescent probes are attractive tools for biomedical in vivo imaging due to the relatively deeper tissue penetration and lower background autofluorescence. Activatable probes are turned on only after binding to their target, further improving target to background ratios. However, the number of available activatable NIR probes is limited.

View Article and Find Full Text PDF