Computational hemodynamic simulations are becoming increasingly important for cardiovascular research and clinical practice, yet incorporating numerical simulations of human fetal circulation is relatively underutilized and underdeveloped. The fetus possesses unique vascular shunts to appropriately distribute oxygen and nutrients acquired from the placenta, adding complexity and adaptability to blood flow patterns within the fetal vascular network. Perturbations to fetal circulation compromise fetal growth and trigger the abnormal cardiovascular remodeling that underlies congenital heart defects.
View Article and Find Full Text PDFElectrical impulse generation and its conduction within cells or cellular networks are the cornerstone of electrophysiology. However, the advancement of the field is limited by sensing accuracy and the scalability of current recording technologies. Here we describe a scalable platform that enables accurate recording of transmembrane potentials in electrogenic cells.
View Article and Find Full Text PDFMantle cell lymphoma (MCL) remains incurable and new treatments are needed, especially in the relapsed/refractory setting. We therefore investigated the effects of carfilzomib, a novel, long-acting, second-generation proteasome inhibitor, in MCL cells. Eight established MCL cell lines and freshly isolated primary MCL cells were treated with carfilzomib.
View Article and Find Full Text PDF