In this review, we summarize the involvement of ascorbic acid in neurodegenerative diseases by presenting available evidence on the behavioral and biochemical effects of this compound in animal models of neurodegeneration as well as the use of ascorbic acid as a therapeutic approach to alleviate neurodegenerative progression in clinical studies. Ascorbate, a reduced form of vitamin C, has gained interest for its multiple functions and mechanisms of action, contributing to the homeostasis of normal tissues and organs as well as to tissue regeneration. In the brain, ascorbate exerts neuromodulatory functions and scavenges reactive oxygen species generated during synaptic activity and neuronal metabolism.
View Article and Find Full Text PDFAscorbate has critical roles in the central nervous system (CNS); it is a neuromodulator of glutamatergic, cholinergic, dopaminergic, and γ-aminobutyric acid (GABA)-ergic neurotransmission, provides support and structure to neurons, and participates in processes such as differentiation, maturation, and survival of neurons. Over the past decade, antioxidant properties of ascorbate have been extensively characterized and now it is known that this compound is highly concentrated in the brain and neuroendocrine tissues. All this information raised the hypothesis that ascorbate may be involved in neurological disorders.
View Article and Find Full Text PDF