A systematic study was carried out to evaluate the uptake and cytotoxicity of methotrexate (MTX) conjugated to superparamagnetic iron oxide nanoparticles (SPIONs) modified with glycerol phosphate (Glyc) and phosphorylethanolamine (PEA), using MCF-7 cancer cell line as model. The ligand shell composition was controlled in such a way to get SPIONs with nine different surface functionalization and up to three co-conjugated ligands but the very iron oxide core, in order to test and compare uptake and cytotoxicity, and verify possible additive effects. Folic acid (FA), the non-toxic analogue of MTX, was also explored as ligand for SPIONs.
View Article and Find Full Text PDFPorphyrins and analogous macrocycles exhibit interesting photochemical, catalytic, and luminescence properties demonstrating high potential in the treatment of several diseases. Among them can be highlighted the possibility of application in photodynamic therapy and antimicrobial/antiparasitic PDT, for example, of malaria parasite. However, the low efficiency generally associated with their low solubility in water and bioavailability have precluded biomedical applications.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
February 2020
The effect of the ligand shell on the cellular uptake efficiency was evaluated by a systematic study using fully dispersed 6 nm diameter superparamagnetic iron oxide nanoparticles (SPIONs), mono and bis-conjugated with glycerol phosphate (glyc), dopamine (dopa), 4,5-dihydroxy-1,3-benzenedisulfonic acid (tiron) and phosphorylethanolamine (pea). Negatively charged SPION-glyc was more efficiently incorporated than positively charged SPION-pea and SPION-dopa clearly evidencing that there are strong enough short-range interactions in addition to the long-range electrostatic interactions, as measured by the zeta potential, to reverse our expectation on cellular uptake. Those effects were pursued by correlating the nanoparticles incorporation efficiency as a function of the respective zeta potentials and the molar fractions of glyc and pea ligands co-conjugated on the SPION surface.
View Article and Find Full Text PDFSize, shape, and surface properties of superparamagnetic iron oxide nanoparticles (SPIONs) can influence their interaction with biological systems, particularly the incorporation by tumor cells and consequently the biological activity and efficiency in biomedical applications. Several strategies have been used to evaluate cellular uptake of SPIONs. While qualitative methods are generally based on microscopy techniques, quantitative assays are carried out by techniques such as inductively coupled plasma-mass spectrometry and flow cytometry.
View Article and Find Full Text PDFThe development of sensitive methodologies for detecting agrochemicals has become important in recent years due to the increasingly indiscriminate use of these substances. In this context, nanosensors based on atomic force microscopy (AFM) tips are useful because they provide higher sensitivity with operation at the nanometer scale. In this paper we exploit specific interactions between AFM tips functionalized with the enzyme acetolactate synthase (ALS) to detect the ALS-inhibitor herbicides metsulfuron-methyl and imazaquin.
View Article and Find Full Text PDFDespite the efforts in controlling the parasite and infection, and the significant progress achieved in recent years in its treatment, malaria is still prevalent in many regions and out of control in others. The repertoire of alternatives to fight malaria is being expanded, not only by designing new drugs but also by developing improved drug delivery systems able to enhance the antimalarial efficiency of conventional and new drugs. Among the new drugs that have been investigated, several publications report the use of porphyrin derivatives as antimalarials but their efficiency is contradictory.
View Article and Find Full Text PDFUnlabelled: Several synthetic metallated protoporphyrins (M-PPIX) were tested for their ability to block the cell cycle of the lethal human malaria parasite Plasmodium falciparum. After encapsulating the porphyrin derivatives in micro- and nanocapsules of marine atelocollagen, their effects on cultures of red blood cells infected (RBC) with P. falciparum were verified.
View Article and Find Full Text PDFGold nanoparticle (AuNP) bioconjugates have been used as therapeutic and diagnostic tools; however, in vivo biocompatibility and cytotoxicity continue to be two fundamental issues. The effect of AuNPs (20 nm) conjugated with antibody [immunoglobulin G (IgG)], albumin, protein A, PEG4000, and citrate (cit) were evaluated in vitro using primary human cells of the vascular system. AuNP bioconjugates did not cause lysis of human erythrocytes, apoptosis or necrosis of human leukocytes, and endothelial cells in vitro, although AuNPs had been internalized and detected in the cytoplasm.
View Article and Find Full Text PDFThe most challenging and wanted development in photodynamic therapy is the control of photosensitizer (PS) cytolocalization and the mechanism of cell death. 5,10,15-triphenyl-20-(3-N-methylpyridinium-yl)porphyrin (3MMe) administered to HeLa cells as DMSO solution accumulates in the cytoplasmic membrane (CM) where it causes severe photodamage and cell necrosis. In contrast, when incorporated in marine atelocollagen/xantham gum polymeric nanocapsules, the PS is shuttled through CM allowing its gradual release and accumulation in mitochondria and lysosomes.
View Article and Find Full Text PDFThe use of agrochemicals has increased considerably in recent years, and consequently, there has been increased exposure of ecosystems and human populations to these highly toxic compounds. The study and development of methodologies to detect these substances with greater sensitivity has become extremely relevant. This article describes, for the first time, the use of atomic force spectroscopy (AFS) in the detection of enzyme-inhibiting herbicides.
View Article and Find Full Text PDFRapid Commun Mass Spectrom
February 2012
The ability of travelling wave ion mobility mass spectrometry (TWIM-MS) to resolve cationic meta/para and cis/trans isomers of mono-, di-, tri- and tetra-ruthenated supramolecular porphyrins was investigated. All meta isomers were found to be more compact than the para isomers and therefore mixtures of all isomeric pairs could be properly resolved with baseline or close to baseline peak-to-peak resolution (R(p-p)). Di-substituted cis/trans isomers were found, however, to present very similar drift times and could not be resolved.
View Article and Find Full Text PDFThe highly hydrophobic 5,10,15-triphenyl-20-(3-N-methylpyridinium-yl)porphyrin (3MMe) cationic species was synthesized, characterized and encapsulated in marine atelocollagen/xanthane gum microcapsules by the coacervation method. Further reduction in the capsule size, from several microns down to about 300-400 nm, was carried out successfully by ultrasonic processing in the presence of up to 1.6% Tween 20 surfactant, without affecting the distribution of 3MMe in the oily core.
View Article and Find Full Text PDF