As the population ages, promoting healthy aging through targeted interventions becomes increasingly crucial. Growing evidence suggests that dietary interventions can significantly impact this process by modulating fundamental molecular pathways. This review focuses on the potential of targeted dietary strategies in promoting healthy aging and the mechanisms by which specific nutrients and dietary patterns influence key pathways involved in cellular repair, inflammation, and metabolic regulation.
View Article and Find Full Text PDFAnti-aging research has made significant strides in identifying treatments capable of extending lifespan across a range of organisms, from simple invertebrates to mammals. This review showcases the current state of anti-aging interventions, highlighting the lifespan extensions observed in animal models through various treatments and the challenges encountered in translating these findings to humans. Despite promising results in lower organisms, the translation of anti-aging treatments to human applications presents a considerable challenge.
View Article and Find Full Text PDFTwo of the most common and incapacitating mental health disorders around the world are major depressive disorder (MDD) and post-stroke depression (PSD). MDD is thought to result from abnormal connectivity between the monoaminergic, glutamatergic, GABAergic, and/or cholinergic pathways. Additional factors include the roles of hormonal, immune, ageing, as well as the influence of cellular, molecular, and epigenetics in the development of mood disorders.
View Article and Find Full Text PDFAgeing is generally characterised by the declining ability to respond to stress, increasing homeostatic imbalance, and increased risk of ageing-associated diseases . Mechanistically, the lifelong accumulation of a wide range of molecular and cellular impairments leads to organismal senescence. The aging population poses a severe medical concern due to the burden it places on healthcare systems and the general public as well as the prevalence of diseases and impairments associated with old age.
View Article and Find Full Text PDFPrevious studies have shown that the polyamine spermidine increased the maximum life span in and the median life span in mice. Since spermidine increases autophagy, we asked if treatment with chloroquine, an inhibitor of autophagy, would shorten the lifespan of mice. Recently, chloroquine has intensively been discussed as a treatment option for COVID-19 patients.
View Article and Find Full Text PDF