Publications by authors named "DaiHua Jiang"

Phosphorus (P) application can improve the availability of selenium (Se) in soil, which benefits the output of Se-rich agricultural products. However, the mechanism by which P affects the adsorption of Se in Se-rich soil is still unclear. Therefore, this study took Se-rich lateritic red soil as the research object and studied the adsorption behavior of P and Se in the soil through batch adsorption tests and soil characterization technology.

View Article and Find Full Text PDF

The ammonium and nitrate removal performance and metabolic pathways of a biocontrol strain, Pseudomonas fluorescens 2P24, were investigated. Strain 2P24 could completely remove 100 mg/L ammonium and nitrate, with removal rates of 8.27 mg/L/h and 4.

View Article and Find Full Text PDF

Manganese (Mn(II)) pollution has recently increased and requires efficient remediation. In this study, QZB-1, isolated from acidic red soil, exhibited high tolerance against Mn(II) (up to 364 mM). Strain QZB-1 removed a total of 98.

View Article and Find Full Text PDF

Data on selenium (Se) transformation, specifically the mineralization or activation of Se bound by microorganisms in natural Se-enriched soil, is limited. Therefore, this study investigates the effects of microorganisms on Se availability of Se-enriched lateritic red soil and Se uptake by pak choi. Following the incubation of Stenotrophomonas maltophilia S1 and arbuscular mycorrhizal (AM) fungi agent, the available Se content of soils increased from 35 to 66.

View Article and Find Full Text PDF

Microorganisms with high selenite-tolerant and efficient reduction ability of selenite have seldom been reported. In this study, a highly selenite-resistant strain (up to 500 mM), isolated from lateritic red soil, was identified as LAB-1. Remarkably, isolate LAB-1 reduced nearly 2 mM of selenite within 18 h with the production of selenium nanoparticles (SeNPs) at the beginning of the exponential phase.

View Article and Find Full Text PDF

The application of biosynthesized nano-selenium fertilizers to crops can improve their nutrient levels by increasing their selenium content. However, microorganisms with a high selenite tolerance and rapid reduction rate accompanied with the production of selenium nanoparticles (SeNPs) at the same time have seldom been reported. In this study, a bacterial strain showing high selenite resistance (up to 300 mM) was isolated from a lateritic red soil and identified as QZB-2.

View Article and Find Full Text PDF

Realizing the smallest nitrogen loss is a challenge in the nitrate reduction process. Dissimilatory nitrate reduction to ammonium (DNRA) and nitrate assimilation play crucial roles in nitrogen retention. In this study, the effects of the carbon source, C/N ratio, pH, and dissolved oxygen on the multiple nitrate reduction pathways conducted by Y-9 are explored.

View Article and Find Full Text PDF

Fish ponds polluted by the black water of eucalyptus forests (formed by the complexation of eucalyptus tannins with Fe) have experienced fish deaths. However, the toxicity of the components of black water is still unclear. To study the acute toxicities of eucalyptus leachate tannins to fish, their changes in the presence of Fe, and the underlying mechanisms, the static bioassay test method was adopted for acute exposure testing of zebrafish.

View Article and Find Full Text PDF

Soil aggregates constitute the basic units of the soil structure, and soil aggregate stability is an important indicator of soil erodibility. Successive planting of fast-growing plantations can change the erosion resistance of the soil under rainfall conditions. Pure Eucalyptus plantations in this study (first- to fourth-generations, i.

View Article and Find Full Text PDF

The mechanical properties and structural design flexibility of charge-trapping polymer electrets have led to their widespread use in organic field-effect transistor (OFET) memories. For example, in the electrets of polyfluorene-based conjugated/insulating block copolymers (BCPs), the confined fiberlike polyfluorene nanostructures in the insulating polymer matrix act as effective hole-trapping sites, leading to controllable memory performance through the design of BCPs. However, few studies have reported intrinsically stretchable charge-trapping materials and their memory device applications, and a practical method to correlate the thin-film morphology of BCP electrets with their charge-trapping ability has not yet been developed.

View Article and Find Full Text PDF

We examined the stability of soil aggregates in five typical plantations, ., × plantation, plantation, plantation, plantation and plantation, in the south subtropical China by the Elliott wet sieving and Le Bissonnais (LB) methods. The results showed that the content of water stability aggregate (WR) was more than 62.

View Article and Find Full Text PDF

Collapsing gully is a common phenomenon of hydraulic-gravity combined soil erosion in granite hilly area of south China. The study aimed to explore the relationship between soil hydraulics pro-perties and erosion mechanism and the intrinsic controlling factors. The active, semi-stable, and stable types of granite collapsing gullies in southeastern Guangxi were selected to examine the spatial variation of soil saturated hydraulic conductivity and identify the influencing factors.

View Article and Find Full Text PDF

Perovskite light-emitting diode (PeLED) has been vigorously developed in recent years. As it has demonstrated good performance on the rigid substrates, the next important direction of PeLED is its integration with stretchable components to realize stretchable, responsive device. Here, we describe a facile fabrication of stretchable perovskite light-emissive touch-responsive devices (PeLETDs) by utilizing highly transparent and conductive polyurethane/silver nanowires (PU/AgNWs) as the electrode.

View Article and Find Full Text PDF

We demonstrated a novel strategy for the preparation of light down-converter by combining rod-coil block copolymers with perovskite quantum dots (QDs) through electrospinning. Reports have shown that polymer deformability can be enhanced by incorporating a soft segment and controlled by varying the rod/coil ratio. Therefore, we first synthesized the rod-coil block copolymer through the click reaction of polyfluorene (PF) and poly(-butyl acrylate) (PBA).

View Article and Find Full Text PDF
Article Synopsis
  • * The study highlights how varying silver nanoparticle shapes and concentrations affect scattering rates, localized surface plasmon resonance (LSPR), and overall luminescence lifetime, with potential benefits for sensor technology.
  • * Finally, the developed nanofibers were successfully applied in a backlight display and as a white-light-emitting diode (LED), showcasing their versatility for future LED and RL device applications.
View Article and Find Full Text PDF

A productive and novel method for fabricating stretchable transparent heaters with recognised thermochromic properties using commercially available thermochromic ink (TM-55-blue) and silver nanowire (AgNW)-coated polydimethylsiloxane (PDMS) is proposed. Lower resistance, elevated heat generation, and higher transparencies were the expected essential prerequisites for the fabrication of items such as smart windows and window defrosters. AgNW-coated PDMS (hereafter PH devices) satisfied the essential prerequisites but did not produce sufficient color change.

View Article and Find Full Text PDF

Elegant integration of three-dimensional (3D) boron nitride (BN) into the porous structure of a polymer nanofiber (NF) membrane system results in a surface with enhanced absorption capacity for removal. Various BN-based applications were designed and developed successfully, but BN-based absorption systems remain relatively unexplored. To develop a reusable absorption strategy with high removal efficiency, we used a composite of 3D BN and polyacrylonitrile (PAN) to prepare a NF membrane with a porous structure by using electrospinning and spray techniques (BN-PAN ES NFs).

View Article and Find Full Text PDF

Black runoff occasionally flows from cutover areas of Eucalyptus plantations, polluting rivers and ponds, and resulting in fish death in severe cases. However, the occurrence patterns and environmental impacts of this black water remain unclear. Herein, we analyzed the major characteristics of black water at the occurrence sites, tested the complexation reaction of ground eucalyptus leaves with a solution of Fe, and determined the color and absorbance of the complex solution.

View Article and Find Full Text PDF

Novel multifunctional fluorescent chemosensors composed of electrospun (ES) nanofibers with high sensitivity toward pH, mercury ions (Hg), and temperature were prepared from poly(-Isopropylacrylamide---methylolacrylamide--rhodamine derivative) (poly(NIPAAm--NMA--RhBN2AM)) by employing an electrospinning process. NIPAAm and NMA moieties provide hydrophilic and thermo-responsive properties (absorption of Hg in aqueous solutions), and chemical cross-linking sites (stabilization of the fibrous structure in aqueous solutions), respectively. The fluorescent probe, RhBN2AM is highly sensitive toward pH and Hg.

View Article and Find Full Text PDF

Novel transparent conductive electrodes (TCEs) with copper (Cu)/silver (Ag) core/shell nanofibers (NFs) containing random, aligned, and crossed structures were prepared using a combination of electrospinning (ES) and chemical reduction. The ES process was used to prepare continuous copper nanofibers (Cu-NFs), which were used as core materials and were then immersed in silver ink (Ag ink) to form a protective layer of Ag to protect the Cu-NFs from oxidation. The Ag shell layer protected the Cu-NFs against oxidation and enhanced their conductivity.

View Article and Find Full Text PDF

Silver nanowire (AgNW) networks have attracted considerable attention as transparent electrodes for emerging flexible optoelectronics. However, the transference of such networks onto diverse arbitrary substrates with high conductivity remains a challenge because of the possibility of detaching and sliding occurring at the interface. Therefore, we developed a water-assisted transfer printing method for the fabrication and transfer of an AgNW-polydimethylsiloxane (PDMS) electrode.

View Article and Find Full Text PDF

Cesium lead halide perovskite nanocrystals (NCs) with excellent intrinsic properties have been employed universally in optoelectronic applications but undergo hydrolysis even when exposed to atmospheric moisture. In the present study, composite CsPbX (X = Cl, Br, and I) perovskite NCs were encapsulated with stretchable (poly(styrene-butadiene-styrene); SBS) fibers by electrospinning to prepare water-resistant hybrid membranes as multicolor optical active layers. Brightly luminescent and color-tunable hydrophobic fiber membranes (FMs) with perovskite NCs were maintained for longer than 1 h in water.

View Article and Find Full Text PDF

In this study, Al-sensitive black soybean (Glycine max (L.) Merr.) specimens were treated in Hoagland solutions containing 50-400µM Al for 1-4 days.

View Article and Find Full Text PDF

Novel dual-ratiometric fluorescent electrospun (ES) nanofibers featuring high sensitivity for pH and ferric ion (Fe(3+)) were prepared using binary blends of poly(2-hydroxyethyl methacrylate-co-N-methylolacrylamide-co-nitrobenzoxadiazolyl derivative) (poly(HEMA-co-NMA-co-NBD)) and a spirolactam rhodamine derivative (SRhBOH) by employing a single-capillary spinneret. The HEMA, NMA, and NBD moieties were designed to exhibit hydrophilic properties, chemical cross-linking, and fluorescence (fluorescence resonance energy transfer (FRET) donor), respectively. The fluorescence emission of SRhBOH was highly selective for pH and Fe(3+); when SRhBOH detected acidic media and Fe(3+), the spirocyclic form of SRhBOH, which is nonfluorescent, was transformed into the opened cyclic form and exhibited strong fluorescence emission.

View Article and Find Full Text PDF

Adsorption of Pseudomonas putida on kaolinite, montmorillonite and goethite was studied in the presence of organic ligands and phosphate. Citrate, tartrate, oxalate and phosphate showed inhibitive effect on P. putida adsorption by three minerals in a broad range of anion concentrations.

View Article and Find Full Text PDF