J Colloid Interface Sci
September 2024
Interlayer intercalation engineering shows great feasibility to improve the structure stability of the layered oxides. Although high Zn-storage capability has been attained based on the pillar effect of multifarious intercalants, an in-depth understanding the synergistic effect of intercalated multiple metal ions is still in deficiency. Herein, alkali metal ion K, alkaline earth metal ion Mg and trivalent metal ion Al are introduced into the VO interlayer of VO.
View Article and Find Full Text PDFThe stable phase transformation during electrochemical progress drives extensive research on vanadium-based polyanions in sodium-ion batteries (SIBs), especially NaV(PO) (NVP). And the electron transfer between V redox couple in NVP could be generally achieved, owing to the confined crystal variation during battery service. However, the more favorable V redox couple is still in hard-to-access situation due to the high barrier and further brings about the corresponding inefficiency in energy densities.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2024
Lithium batteries have been widely used in our daily lives for their high energy density and long-term stability. However, their safety problems are of paramount concern for consumers, which restricts their scale applications. Gel polymer electrolytes (GPEs) compensate for the defects of liquid leakage and lower ionic conductivity of solid electrolytes, which have attracted a lot of attention.
View Article and Find Full Text PDFThe poor electrode kinetics and low conductivity of the LiMn Fe PO cathode seriously impede its practical application. Here, an effective strategy of boron-catalyzed graphitization carbon coating layer is proposed to stabilize the nanostructure and improve the kinetic properties and Li-storage capability of LiMn Fe PO nanocrystals for rechargeable lithium-ion batteries. The graphite-like BC is derived from B-catalyzed graphitization coating layers, which can not only effectively maintain the dynamic stability of the LiMn Fe PO nanostructure during cycling, but also plays an important role in enhancing the conductivity and Li migration kinetics of LiMn Fe PO @B-C.
View Article and Find Full Text PDFMetal organic framework (MOF) derivatives have been extensively used as bifunctional oxygen electrocatalysts. However, the utilization of active sites is still not satisfactory owing to the sluggish mass transport within their narrow pore channels. Herein, interconnected macroporous channels were constructed inside MOFs-derived Co-N-C electrocatalyst to unblock the mass transfer barrier.
View Article and Find Full Text PDFDeveloping high-safety Li-metal anodes (LMAs) is extremely important for the application of high-energy Li-metal batteries (LMBs), especially Li-S and Li-O battery systems. However, the notorious Li-dendrite growth problem results in serious safety concerns for any energy storage application. Through a recent combination of interface-based science, nanotechnology-based solutions and characterization methods, the LMA is now primed for a technological boom.
View Article and Find Full Text PDFIncorporation of N,S-codoped nanotube-like carbon (N,S-NTC) can endow electrode materials with superior electrochemical properties owing to the unique nanoarchitecture and improved kinetics. Herein, α-MnS nanoparticles (NPs) are in situ encapsulated into N,S-NTC, preparing an advanced anode material (α-MnS@N,S-NTC) for lithium-ion/sodium-ion batteries (LIBs/SIBs). It is for the first time revealed that electrochemical α → β phase transition of MnS NPs during the 1st cycle effectively promotes Li-storage properties, which is deduced by the studies of ex situ X-ray diffraction/high-resolution transmission electron microscopy and electrode kinetics.
View Article and Find Full Text PDFIn this communication, in order to develop superior electrode materials for advanced energy storage devices, a new strategy is proposed and then verified by the (Si@MnO)@C/RGO anode material for lithium ion batteries. The core idea of this strategy is the use of a positive cycling trend (gradually increasing Li-storage capacities of the MnO-based constituent during cycling) to compensate the negative one (gradually decreasing capacities of the Si anode) to achieve ultralong cycling stability. As demonstrated in both half and full cells, the as-prepared (Si@MnO)@C/RGO nanocomposite exhibits superior Li-storage properties in terms of ultralong cycling stability (no obvious increase or decrease of capacity when cycled at 3 A g after 1500 cycles) and excellent high-rate capabilities (delivering a capacity of ca.
View Article and Find Full Text PDFAlthough graphene oxide (GO) has large interlayer spacing, it is still inappropriate to use it as an anode for sodium-ion batteries (SIBs) because of the existence of H-bonding between the layers and ultralow electrical conductivity which impedes the Na(+) and e(-) transformation. To solve these issues, chemical, thermal, and electrochemical procedures are traditionally employed to reduce GO nanosheets. However, these strategies are still unscalable, consume high amounts of energy, and are expensive for practical application.
View Article and Find Full Text PDF