Organic room-temperature phosphorescent (RTP) materials have wide-ranging applications in anticounterfeiting, biodiagnostics, and optoelectronic devices due to their unique properties. However, it remains a challenge to give organic RTP materials dynamic tunability to satisfy the demands of various advanced applications. Herein, we propose an effective strategy to precisely modulate phosphorescent performance by incorporating dynamic metal-ligand coordination within a host-guest doped system.
View Article and Find Full Text PDFAnthracnose of the tea plant (), caused by spp., poses a significant threat to both the yield and quality of tea production. To address this challenge, researchers have looked to the application of endophytic bacteria as a natural alternative to the use chemical pesticides, offering potential for enhancing disease resistance and abiotic stress tolerance in tea plants.
View Article and Find Full Text PDFCurrently, the standard treatment for patients who have undergone percutaneous coronary intervention (PCI) following acute myocardial infarction (MI) involves dual antiplatelet therapy (DAPT) with a combination of aspirin and a potent P2Y12 receptor inhibitor. However, the potential benefits of aspirin were partially constrained by the intolerance of some patients. The safety and efficacy of indobufen, an alternative antiplatelet agents to aspirin, in patients with AMI after PCI are yet to be thoroughly investigated.
View Article and Find Full Text PDFAlthough the host-guest doped strategy effectively improves the phosphorescence performance of materials and greatly enriches the variety of materials, most of the guests are organic molecules with weak luminescence ability, which leads to the need for further improvement in the phosphorescence performance of doped materials. Herein, by salinization of organic molecules, the luminescence performance of the guests was effectively improved, thereby significantly enhancing the phosphorescence performance of the doped system. A compound 4-(naphthalen-2-yl)quinoline () containing nitrogen atom was synthesized as initial guest, then was salted to obtain six organic salt guests containing anions BF, PF, CFSO, N(CFSO), ClO, and CFSO, respectively.
View Article and Find Full Text PDFOrganic room-temperature phosphorescence (RTP) materials have attracted considerable attention for their extended afterglow at ambient conditions, eco-friendliness, and wide-ranging applications in bio-imaging, data storage, security inks, and emergency illumination. Significant advancements have been achieved in recent years in developing highly efficient RTP materials by manipulating the intermolecular interactions. In this perspective, we have summarized recent advances in ion-regulated organic RTP materials based on the roles and interactions of ions, including the ion-π interactions, electrostatic interactions, and coordinate interactions.
View Article and Find Full Text PDFA strategy is pioneered for achieving high-temperature phosphorescence using planar rigid molecules as guests and rigid polymers as host matrix. The planar rigid configuration can resist the thermal vibration of the guest at high temperatures, and the rigidity of the matrix further enhances the high-temperature resistance of the guest. The doped materials exhibit an afterglow of 40 s at 293 K, 20 s at 373 K, 6 s at 413 K, and a 1 s afterglow at 433 K.
View Article and Find Full Text PDFAnkylosing spondylitis (AS) is an autoimmune disease which associated with inflammation of the spinal joints. Enhanced osteogenic differentiation was observed in AS; however, the underlying mechanism remains undefined. A cohort of AS (n = 15) and patients with traumatic fracture (n = 15) were recruited to this study.
View Article and Find Full Text PDFOrganic room-temperature phosphorescence (RTP) materials are currently the focus of research in the field of bioimaging. In comparison with the conventional imaging modalities based on organic fluorescent dyes, RTP materials with long lifetime enable time-resolved imaging to improve the imaging resolution by avoiding autofluorescence. In this review, we will start with summarizing strategies for achieving high performance RTP materials for bioimaging, including the development of RTP-compounds, host-guest doping materials, and supramolecular assemblies.
View Article and Find Full Text PDFThe modulation of triplet exciton decay in organic room-temperature phosphorescence (RTP) materials has been considered as a promising strategy for highly efficient photodynamic therapy. In this study, we report an effective approach based on microfluidic technology to manipulate the triplet exciton decay for generating highly reactive oxygen species (ROS). BQD shows strong phosphorescence upon doping into crystalline BP, indicating the high generation of triplet excitons based on the host-guest interaction.
View Article and Find Full Text PDFSmall molecular host-guest doped materials exhibit superiority toward high-efficiency room-temperature phosphorescence (RTP) materials due to their structural design diversity and ease of preparation. Dynamic RTP materials display excellent characteristics, such as good reversibility, quick response, and tunable luminescence ability, making them applicable to various cutting-edge technologies. Herein, we summarize the advances in host-guest doped dynamic RTP materials that respond to external and internal stimuli and present some insights into the molecular design strategies and underlying mechanisms.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
March 2022
Monotonous luminescence has always been a major factor limiting the application of organic room-temperature phosphorescence (RTP) materials. Enhancing and regulating the intermolecular interactions between the host and guest is an effective strategy to achieve excellent phosphorescence performance. In this study, intermolecular halogen bonding (CN⋅⋅⋅Br) was introduced into the host-guest RTP system.
View Article and Find Full Text PDFOrganic near-infrared room temperature phosphorescence materials have unparalleled advantages in bioimaging due to their excellent penetrability. However, limited by the energy gap law, the near-infrared phosphorescence materials (>650 nm) are very rare, moreover, the phosphorescence lifetimes of these materials are very short. In this work, we have obtained organic room temperature phosphorescence materials with long wavelengths (600/657-681/732 nm) and long lifetimes (102-324 ms) for the first time through the guest-host doped strategy.
View Article and Find Full Text PDFA series of poly(1,4-dihydropyridine)s (PDHPs) were successfully synthesized via one-pot metal-free multicomponent polymerization of diacetylenic esters, benzaldehyde, and aniline derivatives. These PDHPs without traditional luminescent units were endowed with tunable triplet energy levels by through-space conjugation from the formation of different cluster sizes. The large and compact clusters can effectively extend the phosphorescence wavelength.
View Article and Find Full Text PDFPure organic room-temperature phosphorescent (RTP) materials have been suggested to be promising bioimaging materials due to their good biocompatibility and long emission lifetime. Herein, we report a class of RTP materials. These materials are developed through the simple introduction of an aromatic carbonyl to a tetraphenylpyrrole molecule and also exhibit aggregation-induced emission (AIE) properties.
View Article and Find Full Text PDFGuest/host phosphorescence materials have attracted much attention; traditionally, researchers have focused on the influence of the electronic properties and energy levels of the molecules on the phosphorescence activities. However, the effects of the morphology on the phosphorescence properties are ignored. Herein, three isoquinoline guests with different aliphatic rings and three hosts are selected to construct guest/host materials.
View Article and Find Full Text PDFOrganic host-guest doped materials exhibiting the room temperature phosphorescence (RTP) phenomenon have attracted considerable attention. However, it is still challenging to investigate their corresponding luminescence mechanism, because for host-guest systems, it is very difficult to obtain single crystals compared to single-component or co-crystal component materials. Herein, we developed a series of organic doped materials with triphenylamine (TPA) as the host and TPA derivatives with different electron-donating groups as guests.
View Article and Find Full Text PDFDual/multi-component organic doped systems with room-temperature phosphorescence (RTP) properties have been developed. However, the unknown luminescence mechanism still greatly limits the development of the doped materials. Herein, a new doped system exhibiting phosphorescence/fluorescence dual emission (Φ =4-24 % and τ =101-343 ms) is successfully constructed through prediction and design.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2020
Organic materials with long-lived, color-tunable phosphorescence are potentially useful for optical recording, anti-counterfeiting, and bioimaging. Herein, we develop a series of novel host-guest organic phosphors allowing dynamic color tuning from the cyan (502 nm) to orange red (608 nm). Guest materials are employed to tune the phosphorescent color, while the host materials interact with the guest to activate the phosphorescence emission.
View Article and Find Full Text PDFThe control of the emission properties of doping materials through molecular design makes organic materials potentially promising candidates for many optoelectronic applications and devices. However, organic doping systems with high quantum yields and persistent luminescence processes have rarely been reported, and their luminescence mechanisms are still not well established. Here we developed a series of purely organic heavy-atom-free doping systems.
View Article and Find Full Text PDFInsufficient intratumoral penetration and limited stroma distribution of the imaging probes or theranostics can lead to a poor-quality diagnosis or therapeutic resistance. Multicellular tumor spheroids can recapitulate the physiological environment of tumor tissues with the extracellular matrix and is thus a better in vitro tumor model to evaluate the imaging performance and barrier penetration capability of advanced cancer imaging probes. In this Article, we designed and synthesized a series of quinoline-based fluorophores with strong emissions in both solution and solid states.
View Article and Find Full Text PDFBackground & Objective: The researches about the expression of tumor necrosis factor receptor-associated factor 4 (TRAF4) in breast cancer are disputable. This study was to investigate the expression of TRAF4 in normal breast, breast carcinoma tissue, and cell lines with different invasive abilities.
Methods: The expression of TRAF4 in 70 specimens of breast carcinoma and 14 specimens of normal breast tissues was detected by SP immunohistochemistry.