The aim of this study was to evaluate the anti-fatigue effect of quercetin in mice. Three-week-old male BALB/c mice, fed with/without 0.005% quercetin for 6 weeks, were randomly divided into two experimental sets (loaded swimming and non-loading swimming tests).
View Article and Find Full Text PDFThe aim of this study was to investigate the effect of dietary L-theanine supplementation on skeletal muscle fiber type transition in mice. Our data indicated that dietary 0.15% L-theanine supplementation significantly increased the mRNA expression levels of muscle fiber type related genes (MyHC I, MyHC IIa, PGC-1α, Sirt1, Tnnt1, Tnnc1, Tnni1, MEF2C) and the protein expression levels of MyHC IIa, myoglobin, PGC-1α, Sirt1 and Troponin I-SS, but significantly decreased the mRNA and protein expression levels of MyHC IIb.
View Article and Find Full Text PDFThis study aimed to investigate the role and underlying molecular mechanism of quercetin in regulating skeletal muscle fiber type transition. We found that dietary quercetin supplementation in mice significantly increased oxidative fiber-related gene expression, slow-twitch fiber percentage and succinic dehydrogenase (SDH) activity. By contrast, quercetin decreased lactate dehydrogenase (LDH) activity, fast MyHC protein expression, fast-twitch fiber percentage, and MyHC IIb mRNA expression.
View Article and Find Full Text PDF