Publications by authors named "Dahro Bachar"

ERFs (ethylene-responsive factors) are known to play a key role in orchestrating cold stress signal transduction. However, the regulatory mechanisms and target genes of most ERFs are far from being well deciphered. In this study, we identified a cold-induced ERF, designated as PtrERF110, from trifoliate orange (Poncirus trifoliata L.

View Article and Find Full Text PDF

Polyploids have elevated stress tolerance, but the underlying mechanisms remain largely elusive. In this study, we showed that naturally occurring tetraploid plants of trifoliate orange (Poncirus trifoliata (L.) Raf.

View Article and Find Full Text PDF

Invertase (INV)-mediated sucrose (Suc) hydrolysis, leading to the irreversible production of glucose (Glc) and fructose (Frc), plays an essential role in abiotic stress tolerance of plants. However, the regulatory network associated with the Suc catabolism in response to cold environment remains largely elusive. Herein, the cold-induced alkaline/neutral INV gene PtrA/NINV7 of trifoliate orange (Poncirus trifoliata (L.

View Article and Find Full Text PDF
Article Synopsis
  • Sucrose hydrolysis through invertase enzymes plays a key role in plant tolerance to abiotic stresses, but the specific functions of INV genes in Citrus relatives are not well understood.
  • In Poncirus trifoliata, fourteen distinct INV genes were identified, with analysis revealing the conservation and uniqueness of these genes, particularly highlighting A/NINV7's crucial role during abiotic stress responses.
  • The study suggests that high levels of sugars correlate with increased activities of soluble INV enzymes, emphasizing their potential importance for cold tolerance in certain Citrus species.
View Article and Find Full Text PDF

Plant ethylene-responsive factors (ERFs) play essential roles in cold stress response, but the molecular mechanisms underlying this process remain poorly understood. In this study, we characterized PtrERF9 from trifoliate orange (Poncirus trifoliata (L.) Raf.

View Article and Find Full Text PDF

Ethylene-responsive factors (ERFs) are plant-specific transcription factors involved in cold stress response, and raffinose is known to accumulate in plants exposed to cold. However, it remains elusive whether ERFs function in cold tolerance by modulating raffinose synthesis. Here, we identified a cold-responsive PtrERF108 from trifoliate orange (Poncirus trifoliata (L.

View Article and Find Full Text PDF

Glycine betaine (GB) is known to accumulate in plants exposed to cold, but the underlying molecular mechanisms and associated regulatory network remain unclear. Here, we demonstrated that PtrMYC2 of Poncirus trifoliata integrates the jasmonic acid (JA) signal to modulate cold-induced GB accumulation by directly regulating PtrBADH-l, a betaine aldehyde dehydrogenase (BADH)-like gene. PtrBADH-l was identified based on transcriptome and expression analysis in P.

View Article and Find Full Text PDF

Ethylene-responsive factors (ERFs) have been revealed to play essential roles in a variety of physiological and biological processes in higher plants. However, functions and regulatory pathways of most ERFs in cold stress remain largely unclear. Here, we identified PtrERF109 of trifoliate orange (Poncirus trifoliata (L.

View Article and Find Full Text PDF

Background: Alkaline/neutral invertase (A/N-INV), an enzyme that hydrolyzes sucrose irreversibly into glucose and fructose, is essential for normal plant growth,development, and stress tolerance. However, the physiological and/or molecular mechanism underpinning the role of A/N-INV in abiotic stress tolerance is poorly understood.

Results: In this report, an A/N-INV gene (PtrA/NINV) was isolated from Poncirus trifoliata, a cold-hardy relative of citrus, and functionally characterized.

View Article and Find Full Text PDF