Parkinson's disease (PD) is a complex neurological disorder characterized by many motor and non-motor symptoms. While most studies focus on the motor symptoms of the disease, it is important to identify markers that underlie different facets of the disease. In this case-control study, we sought to discover reliable, individualized functional connectivity markers associated with both motor and mood symptoms of PD.
View Article and Find Full Text PDFNeuroimaging studies of the functional organization of human auditory cortex have focused on group-level analyses to identify tendencies that represent the typical brain. Here, we mapped auditory areas of the human superior temporal cortex (STC) in 30 participants by combining functional network analysis and 1-mm isotropic resolution 7T functional magnetic resonance imaging (fMRI). Two resting-state fMRI sessions, and one or two auditory and audiovisual speech localizer sessions, were collected on 3-4 separate days.
View Article and Find Full Text PDFBackground: Aphasia affects approximately one-third of stroke patients and yet its rehabilitation outcomes are often unsatisfactory. More effective strategies are needed to promote recovery.
Objective: We aimed to examine the efficacy and safety of the theta-burst stimulation (TBS) on the language area in the superior frontal gyrus (SFG) localized by personalized functional imaging, in facilitating post-stroke aphasia recovery.
Aims: Creutzfeldt-Jakob disease (CJD) is a lethal neurodegenerative disorder, which leads to a rapidly progressive dementia. This study aimed to examine the cortical alterations in CJD, changes in these brain characteristics over time, and the differences between CJD and Alzheimer's disease (AD) that show similar clinical manifestations.
Methods: To obtain reliable, subject-specific functional measures, we acquired 24 min of resting-state fMRI data from each subject.
High-intensity Magnetic Resonance-guided Focused Ultrasound (MRgFUS) is a recent, non-invasive line of treatment for medication-resistant tremor. We used MRgFUS to produce small lesions in the thalamic ventral intermediate nucleus (VIM), an important node in the cerebello-thalamo-cortical tremor network, in 13 patients with tremor-dominant Parkinson's disease or essential tremor. Significant tremor alleviation in the target hand ensued (t(12) = 7.
View Article and Find Full Text PDFSubstantial clinical heterogeneity and comorbidity inherent amongst mental disorders limit the identification of neuroimaging biomarkers that can reliably track clinical symptoms. Strategies that enable generation of meaningful and replicable neurobiological markers at the individual level will push the field of neuropsychiatry forward in developing efficacious personalized treatment. The current study included 142 adult patients with a primary diagnosis of schizophrenia (SCZ), bipolar (BP), or attention deficit/hyperactivity disorder (ADHD), and 67 patient ratings across four behavioral measures.
View Article and Find Full Text PDFBiol Psychiatry Cogn Neurosci Neuroimaging
January 2023
Background: Major depressive disorder (MDD) is a heterogeneous syndrome and can be conceptualized as a mixture of dimensional abnormalities across several specific brain circuits. The neural underpinnings of different symptom dimensions in MDD are not well understood. We aimed to identify robust, generalizable, functional connectivity (FC)-based biomarkers for different symptom dimensions in MDD using individualized functional connectomes.
View Article and Find Full Text PDFWhether antagonistic brain states constitute a fundamental principle of human brain organization has been debated over the past decade. Some argue that intrinsically anti-correlated brain networks in resting-state functional connectivity are an artifact of preprocessing. Others argue that anti-correlations are biologically meaningful predictors of how the brain will respond to different stimuli.
View Article and Find Full Text PDFRepetitive transcranial magnetic stimulation (rTMS) is a noninvasive neuromodulation technique with great potential in the treatment of Parkinson's disease (PD). This study aimed to investigate the clinical efficacy of accelerated rTMS and to understand the underlying neural mechanism. In a double-blinded way, a total of 42 patients with PD were randomized to receive real (n = 22) or sham (n = 20) continuous theta-burst stimulation (cTBS) on the left supplementary motor area (SMA) for 14 consecutive days.
View Article and Find Full Text PDFSignal loss in blood oxygen level-dependent (BOLD) functional neuroimaging is common and can lead to misinterpretation of findings. Here, we reconstructed compromised fMRI signal using deep machine learning. We trained a model to learn principles governing BOLD activity in one dataset and reconstruct artificially compromised regions in an independent dataset, frame by frame.
View Article and Find Full Text PDFObjective: Current understanding of the neuromodulatory effects of deep brain stimulation (DBS) on large-scale brain networks remains elusive, largely due to the lack of techniques that can reveal DBS-induced activity at the whole-brain level. Using a novel 3T magnetic resonance imaging (MRI)-compatible stimulator, we investigated whole-brain effects of subthalamic nucleus (STN) stimulation in patients with Parkinson disease.
Methods: Fourteen patients received STN-DBS treatment and participated in a block-design functional MRI (fMRI) experiment, wherein stimulations were delivered during "ON" blocks interleaved with "OFF" blocks.
Electroconvulsive therapy (ECT) is an effective treatment for severe medication-resistant depression. However, ECT frequently results in episodic memory impairments, causing many patients to discontinue treatment. The objective of this study was to explore the functional connectivity underpinnings of ECT-induced episodic memory impairments.
View Article and Find Full Text PDFGlobal Positioning System (GPS) navigation devices and applications have become ubiquitous over the last decade. However, it is unclear whether using GPS affects our own internal navigation system, or spatial memory, which critically relies on the hippocampus. We assessed the lifetime GPS experience of 50 regular drivers as well as various facets of spatial memory, including spatial memory strategy use, cognitive mapping, and landmark encoding using virtual navigation tasks.
View Article and Find Full Text PDFWhite matter pathways that surround the hippocampus comprise its afferent and efferent connections, and are therefore crucial in mediating the function of the hippocampus. We recently demonstrated a role for the hippocampus in both spatial memory and olfactory identification in humans. In the current study, we focused our attention on the fimbria-fornix white matter bundle and investigated its relationship with spatial memory and olfactory identification.
View Article and Find Full Text PDFIn neuroimaging research, averaging data at the level of the group results in blurring of potentially meaningful individual differences. A more widespread use of an individual-specific approach is advocated for, which involves a more thorough investigation of each individual in a group, and characterization of idiosyncrasies at the level of behavior, cognition, and symptoms, as well as at the level of brain organization. It is hoped that such an approach, focused on individuals, will provide convergent findings that will help identify the underlying pathologic condition in various psychiatric disorders and help in the development of treatments individualized for each patient.
View Article and Find Full Text PDFIt was recently proposed that olfaction evolved to aid navigation. Consistent with this hypothesis, olfactory identification and spatial memory are linked to overlapping brain areas which include the orbitofrontal cortex and hippocampus. However, the relationship between these two processes has never been specifically investigated.
View Article and Find Full Text PDFThe hippocampus is critical to healthy cognition, yet results in the current study show that action video game players have reduced grey matter within the hippocampus. A subsequent randomised longitudinal training experiment demonstrated that first-person shooting games reduce grey matter within the hippocampus in participants using non-spatial memory strategies. Conversely, participants who use hippocampus-dependent spatial strategies showed increased grey matter in the hippocampus after training.
View Article and Find Full Text PDFThe hippocampus and the caudate nucleus are critical to spatial- and stimulus-response-based navigation strategies, respectively. The hippocampus and caudate nucleus are also known to be anatomically connected to various areas of the prefrontal cortex. However, little is known about the involvement of the prefrontal cortex in these processes.
View Article and Find Full Text PDFLarge displays and stereopsis have been shown to improve performance in several virtual navigation tasks. In the present research, we sought to determine whether wayfinding could benefit from these factors. Participants were tested in a virtual town.
View Article and Find Full Text PDFNeurobiol Learn Mem
January 2012
The present research examined the relationship between endogenous glucocorticoids, navigational strategies in a virtual navigation task, and performance on standard neuropsychological assessments of memory. Healthy young adult participants (N=66, mean age: 21.7) were tested on the 4 on 8 virtual maze (4/8 VM) and standard neuropsychological tests such as the Rey-Osterrieth Complex Figure (RO) and the Rey Auditory Verbal Learning Task (RAVLT), which measure episodic memory.
View Article and Find Full Text PDF